ОЦЕНКА УПЛОТНЕНИЯ ГРУНТА ПОД СЛЕДОМ КОЛЕСА ТРАНСПОРТНОГО СРЕДСТВА

Довжик М.Я., к.т.н., доцент, Татьянченко Б.Я., к.т.н., доцент, Соларёв А.А., аспирант

Сумской национальный аграрный университет

Введение. Переуплотнение почвы рабочими органами машин, работающих на полях, является существенным фактором, влияющим на рост и урожайность сельскохозяйственных культур. Известно, что уплотнение грунта влияет на его пористость и связанные с ней такие свойства, как газообмен и аэрация, температурный режим и теплопроводность, а также физические и механические характеристики. В связи с этим возникает необходимость изучения напряженно-деформированного состояния грунта и количественной оценки изменения его плотности под колесами и гусеницами машин. В данной работе сделана попытка решения этой задачи на основе известных выводов науки о механике грунтов.

Цель работы и постановка задачи. Цель работы — правильный выбор теории определения закономерностей распределения напряжений и деформаций в массиве, что является довольно трудной задачей, потому что грунт — специфический материал, сильно отличающийся от общепринятой модели сплошной среды. Необходимо учитывать следующие его особенности:

- 1. Грунт характеризуется неравномерным распределением по его объёму кристаллических и аморфных качеств, поэтому его можно считать однородным и изотропным весьма условно.
- 2. Вследствие влажности в грунте возникают пластические сдвиги, ползучесть и остаточные деформации даже при относительно небольшом давлении.
- 3. Грунт совершенно не сопротивляется растягивающим нагрузкам и с трудом сохраняет свою форму даже под воздействием массовых сил, а зависимость между напряжениями и деформациями далеко не следует линейной закономерности.
- 4. Кроме мгновенной деформации, возникающей в процессе приложения сил, грунт деформируется также во времени, проявляя свойства ползучести, что особенно опасно при строительстве зданий и сооружений.
- 5. Изменение объема грунта в области пластического деформирования следует закону упругости [4, с. 155].

По этим причинам практически не представляется возможным создать теорию механического расчета грунтов, охватывающуюся все перечисленные особенности, хотя попытки получить прогресс в этом направлении не прекращаются.

При этом теоретическая наука о механике грунтов все более усложняется, а практическое подтверждение опытом оставляет желать лучшего. В связи с этим наиболее рациональным подходом с нашей точки зрения будет выбор метода из числа зарекомендовавших себя как своей простотой, так и проверенных на практике.

Основная часть. В настоящие время, наряду с классической механикой грунтов, основанной на допущении линейной зависимости между усилиями и деформациями, применяются и другие методы, такие как принцип условных расчетов, принцип граничных состояний, теория надежности [1, с. 146 – 148]. Задачи механики грунтов решаются в настоящее время на базе теории упругости, теории пластичности и ползучести, гидромеханики, математической физики, механики разрушения. Широко применяются численные методы решения. Исходя из поведения грунта под нагрузкой, а также учитывая небольшое давление на грунт от транспортных средств (по сравнению, например, с фундаментами), в практических расчетах в фазе уплотнения грунта можно использовать теорию линейно-деформированной среды [1, с. 149], согласно которой деформация изменяется пропорционально напряжениям и грунт ведет себя как упругий материал, подчиняющийся закону Гука. Поэтому в данном случае можно использовать математический аппарат теории упругости. Как было сказано, грунт можно считать сплошной, однородной и изотропной средой лишь с определенным приближением, поэтому были предприняты попытки создания более точных механических моделей грунта, таких как реологические и другие, но по известным причинам они не нашли применения при решении реальных задач. Следовательно, имеются все основания остановится на принципе линейно-деформированной среды.

Другим важным моментом при решении поставленной задачи является выбор расчетной схемы. Взаимодействие колеса с поверхностью почвы имеет сложный характер. Во-первых, это динамическая задача: грунт под колесом оседает и в нем возникают сжимающиеся напряжения, которые можно характеризовать как объёмное напряженное состояние, при этом впереди колеса движется волнообразный деформированный поток, который затем «застывает» в виде полосы бесконечной длинны. Таким образом, этот случай аналогичен деформации грунта под равномерно распределенной нагрузкой, известный как вдавливание жесткого штампа в полупространство [4, с. 464].

Во время качения колеса грунт под ним деформируется во всех направлениях, поэтому в произвольной точке массива имеет место объемное напряженное состояние, которое характеризуется девятью величинами напряжений. Принимая во внимание, что в конечном состоянии вдоль полосы грунт не имеет возможности деформироваться, задачу можно свести к плоскому решению.

Выделим элемент деформированной полосы единичной толщины двумя сечениями, перпендикулярными ее продольной оси, и, положив начало координат (точку O) в центр распределенной нагрузки на свободной

поверхности полуплоскости, направим ось Oz вдоль полосы, ось Ox вглубь массива, а ось Oy вдоль свободной поверхности полуплоскости.

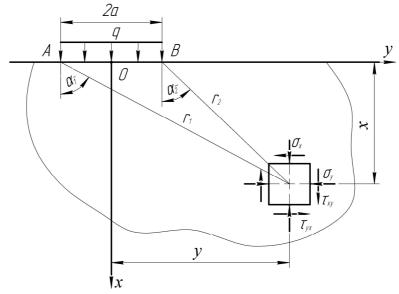


Рис. 1. К определению напряжений в плоскости xOy.

Тогда полоску единичной ширины можно рассматривать как полубесконечную плоскость с равномерно распределенной нагрузкой q по ширине полосы 2a, (рис. 1).

Известно общее решение этой задачи [3, с.102]:

$$\sigma_x = \frac{q}{2\pi} \left[2(\alpha_2 - \alpha_1) + \sin 2\alpha_2 - \sin 2\alpha_1 \right];$$

$$\sigma_y = \frac{q}{2\pi} \left[2(\alpha_2 - \alpha_1) - \sin 2\alpha_2 + \sin 2\alpha_1 \right];$$

$$\sigma_x = \frac{q}{\pi} (\sin^2 \alpha_2 - \sin^2 \alpha_1).$$

Его можно записать в декартовой системе координат в соответствии с обозначениями на рис. 1:

$$\sigma_{x} = \frac{q}{\pi} \begin{bmatrix} \arcsin \frac{y-a}{\sqrt{x^{2} + (x-a)^{2}}} - \arcsin \frac{y+a}{\sqrt{x^{2} + (x+a)^{2}}} + \\ + \frac{x(x-a)}{x^{2} + (y-a)^{2}} - \frac{x(x+a)}{x^{2} + (y+a)^{2}} \end{bmatrix};$$

$$\sigma_{y} = \frac{q}{\pi} \begin{bmatrix} \arcsin \frac{y-a}{\sqrt{x^{2} + (x-a)^{2}}} - \arcsin \frac{y+a}{\sqrt{x^{2} + (x+a)^{2}}} - \\ - \frac{x(x-a)}{x^{2} + (y-a)^{2}} + \frac{x(x+a)}{x^{2} + (y+a)^{2}} \end{bmatrix};$$

$$\tau_{xy} = \frac{q}{\pi} \left[\frac{(y-a)^{2}}{x^{2} + (y-a)^{2}} - \frac{(y+a)^{2}}{x^{2} + (y+a)^{2}} \right].$$

Из условия, что деформация в направлении оси Ог

$$\varepsilon_z = \left[\sigma_z - \mu(\sigma_x + \sigma_y)\right]/E = 0,$$

находим третье нормальное напряжение, действующие в сечениях, перпендикулярных оси Oz:

$$\sigma_z = \mu(\sigma_x + \sigma_y) = \frac{2\mu q}{\pi} \left[\arcsin \frac{y - a}{\sqrt{x^2 + (x - a)^2}} - \arcsin \frac{y + a}{\sqrt{x^2 + (x + a)^2}} \right],$$

где μ - коэффициент Пуассона; E - модуль продольной упругости.

Так как в плоскостях, перпендикулярных оси Oz, нет сдвигающих усилий и $\tau_{xz}=\tau_{yz}=0$, то в силу закона парности касательных напряжений $\tau_{zx}=\tau_{xz}=0$; $\tau_{zy}=\tau_{yz}=0$. Таким образом, все девять компонентов тензора напряженного состояния определены.

Если при вычислении напряжений координаты точек выразить через параметр a, то после сокращения результатов на величину q получим отношения значений напряжений σ_x/q ; σ_y/q ; σ_z/q ; σ_z/q ; σ_z/q , которые будут общими для любых случаев нагружения, независимо от значения a и q. На рис. 2 представлена матрица напряжений в грунте для правой стороны полупространства, симметричного относительно оси Ox. При вычислении напряжений было принято значение $\mu = 0.35$ как наиболее приемлемое для черноземных грунтов; кроме того, отброшен знак «минус», присущий для всех напряжений в условиях всестороннего сжатия.

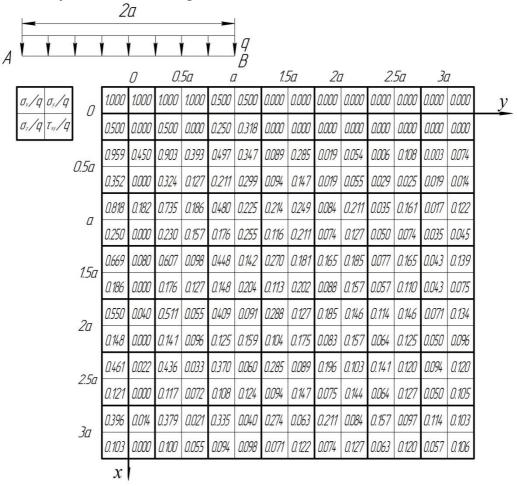


Рис. 2. Распределение относительных напряжений в грунте

Таблица на рис. 2 является универсальной матрицей относительных напряжений, пользуясь которой можно определить все напряжения произвольной точке массива, независимо от ширины колеса 2а. Достаточно умножить число, находящиеся в соответствующей клетке матрицы, интенсивность q — в данном случае расчетное удельное давление колес тракторов, автомобилей или комбайнов [2, с.54 – 57]. Из таблицы следует, что наибольшее по модулю напряжение σ_x распространяется на значительную глубину и при x = 3a все еще составляет около 40% от своего максимального значения. Как и следовало ожидать, максимальное сжатие грунта имеет место в центре нагрузки. Вертикальное и горизонтальное напряжение здесь равны удельному давлению q. Касательные напряжения по вертикальным горизонтальным площадкам во всех точках на линии Ox равны нулю, поэтому σ_{x} и σ_{y} здесь будут главными напряжениями. На свободной поверхности грунта при y > |a| все составляющие напряжения равны нулю. В особых точках A и B вследствие обрыва давления имеет место сдвиг грунта, находящегося под штампом. Именно в этих точках зарождаются пластические деформации и при определенном значении нагрузки грунт переходит в пластическое состояние, вглубь массива которое с ростом давления распространяется называемым линиям скольжения. В действительности этот переход должен быть плавным, так как колесо обычно имеет скругления.

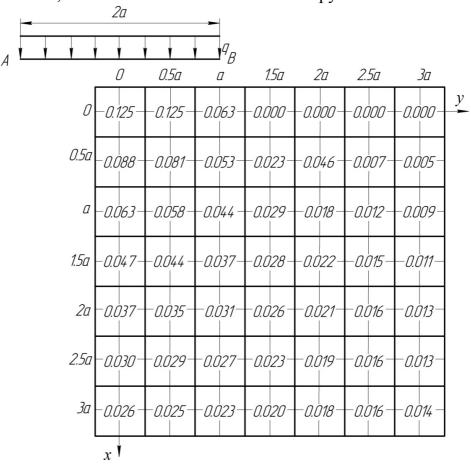


Рис.3. Изменения объёма грунта, отнесенные к удельному давлению на грунт $\theta / q \ [1/M\Pi a]$

В горизонтальном направлении с ростом ординаты у напряжения быстро убывают и уже при y = 2a составляют 1 - 5% от своих максимальных значений. Касательные напряжения имеют экстремумы, которые можно определить из условий:

$$\frac{d\tau_{xy}}{dy} = \mathbf{0}; \quad \frac{d\tau_{yx}}{dy} = \mathbf{0}.$$

Относительное изменение объема (относительная деформация) в произвольной точке равно $\theta = (1-2\mu)(\sigma_x + \sigma_y + \sigma_z)/E$. Принимая $\mu = 0.25$ и E = 10 МПа, вычисляем значения θ для намеченных точек с координатами x и y в пределах 0 - 3a. Результаты расчетов сведены в таблице на рис. 3, где величина θ / q имеет размерность [1/MПа]. После умножения ее на q получим истинное значение θ в соответствующей точке. Увеличившаяся от сжатия относительная плотность будет:

$$\xi = \frac{p}{p_{\rm o}} = \frac{1}{1-{\rm m} \ {\rm EMBED} \ {\rm Equation.3 \ mbm}},$$
 где $p_{\rm o}-$ плотность грунта в свободном от напряжений состоянии.

Выводы. Разработанный метод позволяет быстро определить глубину и степень уплотнения грунта от того или иного вида техники и обосновать выбор машины, обеспечивающей уплотнение в необходимых пределах, допустимых для конкретного вида сельскохозяйственной культуры и характера грунта.

Пример 1. Пусть требуется определить относительное изменение плотности грунта под следом колеса автомобиля MA3-500A на глубине a от поверхности. Из таблицы [2, с. 57] находим $q = 0.35 \ M\Pi a$, а согласно рис. 3 для x = a отношение $\theta / q = 0.41$. Тогда $\theta = 0.35 \times 0.063 = 0.022$ и искомое значение

$$\xi = \frac{1}{1 - 0.022} = 1.022.$$

Увеличение плотности на 10 – 12% повлечет снижение урожайности картофеля на 8%, а урожайность озимой пшеницы может снизиться на 20 -40% [2, c. 9 - 12].

Результаты расчётов для принятых значений упругих констант грунта не расходятся с имеющимися в литературе аналогичными данными. Например, средние давление в грунте на голубине а под колесами трактора К-700 согласно литературным данным [2, с. 35] составляет 0,07 МПа. По предлагаемому методу, среднее статическое давление на глубине a (рис. 2) равно:

$$(0.818 + 0.182 + 0.250) \cdot 0.105 = 0.044 \text{ M}\Pi a.$$

Здесь $q = 0,105 \ M\Pi a$ — удельное давление на грунт от передних колес трактора K-700 [2, c. 55]. С учетом динамического коэффициента, который для трактора K-700 при скорости движения 12 км/час равен 1,32 [2, с. 53], средние давление будет 0,058 $M\Pi a$. Относительное изменение объема при принятых ранее механических характеристиках грунта $\theta = 0,375$, а относительное увеличение его плотности составит 16%.

Список литературы

- 1. Інженерна геологія. Механіка грунтів, основи та фундаменти : підручник / [Зоценко М.Л., Коваленко В.І. та ін.]; за ред. М.Л. Зоценко. Полтава: ПНТУ, $2003.-554~\rm c.$
- 2. Кравченко В.И. Уплотнение почв машинами / В.И. Кравченко. Алма-Ата: «Наука», 1986.-96 с.
- 3. Самусь В.И. Основы теории упругости и пластичности / В.И. Самусь. М.: «Высшая школа», 1982. 264 с.
 - 4. Терегулов И.Г. Сопротивление материалов и основы теории упругости и пластичности / И.Г.Трегулов. М.: «Высшая школа», 1984. 472 с.