ОЦЕНКА ВЛИЯНИЯ НАСЛЕДСТВЕННЫХ ФАКТОРОВ НА ПОКАЗАТЕЛИ ПОЖИЗНЕННОЙ ПРОДУКТИВНОСТИ КОРОВ УКРАИНСКОЙ КРАСНО-ПЕСТРОЙ МОЛОЧНОЙ ПОРОДЫ

современном этапе селекции молочного скота продуктивного использования находится в прямой связи с биологически возможным долголетием каждого животного. Физиологически, при условии рациональных методов содержания и полноценного кормления, коровы способные хранить высокий уровень продуктивности и воспроизводимую способность до 10-12-ти летнего возраста. Актуальность вопроса относительно коров украинских молочных продуктивного долголетия пород заостряется через использование, при дальнейшем их усовершенствовании, быков-производителей голштинской породы, поскольку, как свидетельствует практика большинства стран мира отечественные исследователи, И генофонда использование голштинов сопровождается повышением требовательности их высококровного потомства к условиям кормления и содержания и, как следствие, к уменьшению показателей хозяйственно полезных признаков, в том числе и продуктивного использования [1, 3, 6, 7].

На данном этапе селекции наследственность коров всех созданных украинских пород молочного скота содержит в своем генотипе огромное количество вариантов условной кровности голштинской породы через широкое использование за последних 30-40 лет как чистопородных быковпроизводителей североамериканской и европейской селекции, так и помесных по голштину украинских черно- и красно-пестрой молочных пород. Особенно это касается украинской красно-пестрой молочной породы, поскольку она была самой первой утвержденной, как селекционное достижение, еще в 1996 году.

По данным отдельных исследователей [1, 2, 5] показатели длительности продуктивного использования коров детерминируются не только паратипическими факторами, но и генотипом животных, в частности их принадлежностью к породе и линии, а также частью наследственности голштинской породы.

Дальнейшая селекция украинской красно-пестрой молочной породы, через использование в этом процессе животных разных генотипов, требует проведения исследований по определению зависимости признаков пожизненной продуктивности от всех возможных генотипических факторов, в том числе и от части условной кровности улучшающей породы и происхождения. В связи с этим, цель исследований заключалась в изучении длительности продуктивного использования и пожизненной продуктивности у голштинизированных коров разной кровности и выявлении наследственных факторов, которые влияют на их долголетие.

Материал и методика исследований. Экспериментальной базой проведенных исследований служила селекционная информация племенного завода ЧСП "Пискивское" Бахмачского района Черниговской области.

Ретроспективную оценку коров украинской красно-пестрой молочной породы по признакам молочной продуктивности в пределах генотипов и генеалогических формирований по учтенным лактациям проводили по показателям базы данных автоматизированного племенного учета хозяйства. В пределах генотипов было сформировано шесть групп помесных животных с учетом условной кровности по голштину: І группа 1/4-кровные; ІІ группа - 3/8; ІІІ - 1/2; ІV - 5/8; V - 3/4 и VІ - 7/8-кровные. Биометрическую обработку результатов исследований проводили по методикам Е. К. Меркурьевой [4] на ПЭВМ с использованием программного обеспечения.

Результаты исследований и их обсуждение. Стадо племенного завода ЧСП "Пискивское" создавалось по общепринятой схеме воспроизводительного скрещивания местной симментальской породы с быками-производителями голштинской красно-пестрой масти. Использование на разных этапах скрещивания помесных быков по голштинской породе и чистопородных симментальских существенно дополнило разнообразие генотипического состава маточного поголовья животных.

Анализируя группы помесных коров разных генотипов по показателям длительности хозяйственного использования и по количеству лактаций, можно утверждать, что эти признаки испытывают закономерное влияние условной части наследственности голштинской породы. Данный вывод подтверждается сравнительным анализом результатов исследований, приведенных в табл. 1, который показывает, что с увеличением у помесей условной части кровности по улучшающей породе соответственно уменьшался срок их хозяйственного использования.

Дольше всего в стаде использовались помесные коровы с кровностью голштина 25,0%, полученные на первом этапе создания породы в результате обратного скрещивания, и помеси с наследственностью отцовской породы до 50,0%. В дальнейшем, на заключительном этапе скрещивания, у животных так называемых конечных генотипов с кровностью 62,5-87,5%, наблюдалось ощутимое сокращение длительности хозяйственного использования. Так, высококровные животные с условной кровностью голштина 75,0 и 87,5% уступали группам помесных коров с наследственностью 25,0 и 50,0% с достоверной разницей соответственно на 590 и 633 (Р<0,001) и 432 и 475 (Р<0,001) дней.

Сравнение количества использованных лактаций более наглядно подтверждает зависимость их величины от части наследственности улучшающей породы.

Если условно разделить шесть оцениваемых нами наиболее распространенных помесных генотипов животных на две группы, одна с низкой частью наследственности по голштину - 1/4; 3/8 и 1/2, другая с высокой - 5/8; 3/4 и 7/8, то уже среди первой группы низкокровных по голштину коров выявлена достоверная разница в сравнении между животными с одной четвертой частью крови и помесями с 3/8 и 1/2 частями, которая соответственно составила 0,4 (P<0,05) и 0,5 (P<0,001) лактаций. С ростом условной части наследственности улучшающей породы на 12,5% длительность

использования лактаций снижалась в произвольном распределении между генотипами на 0,1-0,8 лактаций. Две группы коров с самой высокой кровностью голштина, соответственно 75,0 и 87,5%, сократили свое продуктивное использование до 3,3 и 3,2 лактаций. Разница между помесными генотипами с кровностью 5/8 и 3,4 была наивысшей (0,8 лактации) с высокой достоверностью при P<0,001 (td=4,91).

Таблица 1 Пожизненная продуктивность и длительность использования коров разных генотипов

Генотип (кровность по голштину)	n	Длительность использования		Пожизненная продуктивность			AH KT
							на один кизни, кі
		хозяйст- венного, дн.	лактаций	удой, кг	% жира	кг жира	Удой на оди день жизни,
		хоз вен дн.	П				
1/4	128	2664	4,8	25574	3,83	977	9,6
(25,0%)	120	$\pm 80,7$	$\pm 0,12$	±842,1	±0,017	$\pm 52,3$	±0,27
3/8	110	2506	4,4	25310	3,81	964	10,1
(37,5%)		$\pm 92,5$	$\pm 0,11$	±997,3	±0,015	±59,3	$\pm 0,35$
1/2	166	2460	4,3	26322	3,80	1001±4	10,7
(50,0%)		$\pm 75,4$	$\pm 0,09$	±768,2	±0,014	8,7	$\pm 0,33$
5/8	155	2376	4,1	27086	3,78	1023±5	11,4
(62,5%)		±71,2	$\pm 0,12$	±804,4	±0,016	0,1	±0,31
3/4	198	2074	3,3	27584	3,79	1045±4	13,3
(75,0%)		$\pm 68,4$	$\pm 0,11$	±677,6	±0,012	4,2	±0,28
7/8	298	2031	3,2	28434	3,78	1075±3	14,0
(87,5%)	290	±62,9	$\pm 0,09$	±532,2	±0,009	9,7	±0,21

Экономическая значимость показателей оценки животных по пожизненной продуктивности со временем перешла в ранг признаков по определению племенной ценности, поэтому в некоторых странах Европы и Северной Америки длительность хозяйственного использования коров включена, как селекционный признак, в систему селекции крупного рогатого скота [8, 9, 10, 11], поскольку сокращение продуктивного долголетия коров негативно отражается на эффективности селекции через замедление темпов воспроизводства стада и интенсивности отбора в нем.

Оценивая пожизненную продуктивность коров подопытных генотипов по величине удоя можно сделать обобщающий вывод, который свидетельствует о существовании криволинейной связи между условной кровностью по улучшающей породе и удоем за продуктивную жизнь. Он заключается в том, что если на первых этапах скрещивания с поглощением крови местной породы голштинской у 3/8-кровних помесей пожизненный удой уменьшался, то на заключительном этапе, благодаря наращиванию генетического потенциала у

высококровных генотипов, рост наследственности голштинской породы не повлек у них соответствующего уменьшения пожизненного удоя. Напротив, от группы коров с условной частью крови 7/8 голштина было получено наивысший пожизненный удой с превышением групп коров остальных генотипов на 1250-3260 кг молока с достоверной разницей в сравнениях с помесными генотипами 1/4 (P<0,001), 3/8 (P<0,001), 1/2 (P<0,01) и 5/8 (P<0,05) частями крови по голштину.

Однако, если учесть потерянную в высококровных по голштину коров одну лактацию, в итоге убытков – один теленок и, по меньшей мере, 4830 кг молока от одной коровы через сокращение длительности хозяйственного использования.

Жирномолочность помесных коров разных генотипов при изменении частей наследственности исходных симментальской и голштинской пород испытала некоторое влияние улучшающей породы. Между содержанием жира в молоке коров с наследственностью голштина 25,0% и высококровными животными (87,5%) установлена незначительная, но достоверная разница – 0,05% (P<0,01).

Незначительное снижение жирномолочности у высококровных коров компенсируется высшими показателями выхода молочного жира, хотя существующая разница в пределах 30-111 кг в пользу 7/8-кровних помесей недостоверная.

В качестве определенного интегрированного показателя, который лучше всего характеризует генетический потенциал животных, независимо от хозяйственного использования и пожизненной продуктивности, есть удой коров на один день их жизни. В наших исследованиях коровы с наследственностью голштинської породы 87,5% отличались от остальных животных помесных генотипов наивысшим удоем на один день жизни, который представляет 14 кг молока. Их превышение по этому признаку достоверно подтверждено во всех сравнениях и составляет от 0,7 кг (P<0,05) в сравнении с тричвертькровными животными, до 4,4 кг (P<0,001) в сравнении с одночвертькровными помесями.

Отличное экстерьерно-конституциональное развитие крепость нормальное функционирование всех его органов и систем жизнедеятельности, является предпосылкой соответствующей прижизненной и пожизненной продуктивности животных. Пожизненная продуктивность и долголетие, совместно с влиянием на экономические показатели, тесно связанные с селекционным процессом, поскольку как для производства, так и для племенного дела наиболее ценны те животные, в которых эти два признака удачно сочетаются. Высокая пожизненная продуктивность коров отображает племенную ценность, а при длительном хозяйственном использовании от них получают больше потомков, увеличивая, благодаря этому, в стаде часть животных с ценными генотипами. Из вышеизложенного будет мотивируемым обоснование касательно исследований в аспекте влияния изменения условной части кровности голштина на длительность хозяйственного использования высокопродуктивных коров.

Анализ показателей срока длительности использования и признаков молочной продуктивности высокопродуктивных коров по высшей лактации стада ПЗ "Пискивское", которые приведены в табл. 2, определенным образом подтвердил обоснование относительно позитивного жизнедеятельности организма высокопродуктивных животных на удлинение период продуктивного использования. Самый длинный срока ИХ использовались низкокровные животные (5,1 лактации), полученные от обратного скрещивания с наследственностью голштина 25,0%, превысив средний показатель использования группы одногенотипних коров на 0,3 лактации (см. табл. 1). Высококровные помеси с наследственностью голштина 87,5% использовались 3,9 лактации, что достоверно выше в сравнении с одногенотипними животными на 0,7 лактации (Р<0,001). Группы помесных генотипов с условной кровностью от 37,5 до 75,0% при росте средней продуктивности по высшей лактации от 5335 до 6758 кг молока не отличались по количеству отелов и использовались на протяжении 4,3-4,4 лактаций.

Таблица 2 Длительность использования и молочная продуктивность высокопродуктивных коров разных генотипов по высшей лактации

Генотип (кровность по голштину)	n	Длительность использования					удой на один
		хозяйств ен-ного, дн.	лактаци й	удой, кг	% жиру	кг жира	день лакта- ции, кг
1/4		, ,	•	5200	2 92	202.4	•
(25,0%)	22	2798 ±76,8	5,1 $\pm 0,21$	5299 ±140,2	$3,82 \pm 0,021$	202,4 ±3,51	17,4 ±0,32
3/8	31	2516	4,4	5335	3,79	202,2	17,5
(37,5%)		±78,5	$\pm 0,19$	±157,4	±0,022	±4,01	±0,43
1/2	36	2465	4,3	5896	3,80	224,0	19,3
(50,0%)		±84,6	$\pm 0,15$	±192,6	±0,021	$\pm 3,98$	$\pm 0,25$
5/8	43	2506	4,4	6218	3,81	236,9	20,3
(62,5%)		±80,1	$\pm 0,12$	±204,3	±0,020	±4,12	$\pm 0,27$
3/4	40	2457	4,3	6595	3,78	249,3	21,6
(75,0%)		±74,5	$\pm 0,11$	±197,2	±0,022	±3,65	±0,30
7/8	34	2304	3,9	6758	3,79	256,1	22,2
(87,5%)		±88,4	$\pm 0,09$	±181,6	±0,023	±2,97	±0,28

По удою на один день жизни высокопродуктивные коровы с наследственностью голштина 87,5% превышали с высокодостоверной разницей при P<0,001 помесных генотипов с условной кровностью от 25,0 до 62,5% на 1,9-4,8 кг молока.

Заключение. Результаты исследований по изучению связи между частью условной наследственности голштина и признаками пожизненной продуктивности позволяют утверждать, что дальнейшее наращивание

наследственности голштинской породы в массиве украинской красно-пестрой будет сопровождаться снижением длительности использования коров. В связи с этим можно порекомендовать хозяйствам использовать на данном этапе селекции быков-производителей украинской селекции, то есть помесных по голштинськой породе, с соответственно высокой племенной ценностью, желательно оцененных по экстерьерному типу их дочерей.

Однако, при недостаточном количестве быков-производителей отечественной селекции, перспектива дальнейшего использования генофонда голштинской породы зарубежной селекции требует создания в хозяйствах таких условий, которые бы способствовали максимальной реализации генетического потенциала высококровных генотипов, что в свою очередь если не остановит сокращения длительности продуктивного использования коров, то, по крайней мере, несколько затормозит этот процесс.

ЛИТЕРАТУРА

- 1. Даниленко В. П. До питання ефективності використання молочних порід у господарстві / В. П. Даниленко, І. А. Рудик // Розведення і генетика тварин. Міжвідомчий тематичний науковий збірник. К. 2012. Вип. 46. С. 63-66. 9
- 2. Кальчук Л. А. Зв'язок молочної продуктивності з показниками відтворної здатності та господарського використання у корів чорно-рябої породи / Л. А. Кальчук, М. С. Пелехатий // науково-технічний бюлетень. Харків. 2001. № 680. С. 64-67. 10
- 3. Левина Г. Пожизненный удой и долголетие коров / Г. Левина, Н. Сивкин, И. Петрова // Молочное и мясное скотоводство. -2002. №6. С. 27-29. 12
- 4. Меркурьева Е. К. Биометрия в селекции и генетике сельскохозяйственных животных / Е. К. Меркурьева М. : Колос, 1970. 423 с. 64
- 5. Моисеев К. А. Влияние генотипических факторов на принадлежность хозяйственного использования и пожизненную молочную продуктивность коров в стаде РУП "Учхоз БГСХА" / К. А. Моисеев, Т. В. Павлова, Н. В. Казаровец // Розведення і генетика тварин: міжвідомчий тематичний науковий збірник. К. 2012. Вип. 46. С. 106-109. 14
- 6. Рудик І. А. Вплив генотипу і середовища на ріст, розвиток та тривалість використання тварин українських червоно-рябої та чорно-рябої порід / І. А. Рудик, М. С. Ківа, О. А. Хом'як, Р. В. Ставецька [та ін.]. Науковотехнічний бюлетень. Харків. 2001. №80. С. 105-107. 16
- 7. Ференц Л. В. Хозяйственно-биологические особенности коров украинской черно-пестрой молочной породы разных генотипов в условиях Прикарпаття / Л. В. Ференц, Е. И. Федорович, В. В. Федорович, И. С. Сирацкий, [и др.] // Тезисы докладов Межд. научно-практ. конф. посвященной 60-летию зоотехн. науки Беларуси (15-16 октября 2009 г.) «Стратегия развития зоотехнической науки». Жодино. 2009. С. 162-163.

- 8. Madgwick P. A. Genetics and phenotypics parameters of longer vity in Australian dairy cattle / P. A. Madgwick, M. E. Gaddard // Dairu Sc. -1989. v. 72. No 10. P. 2624-2632. 22
- 9. Relationships of curly performance traits to lifetime profitability in Holstein cows / K. K. Kulak, I. C. M. Dekkers, A. J. McAllister [et al.] // Can. J. Anim. Sci. 1977. 77. P. 617-624. 23
- 10. The influence of additive and nonadditive gene action on lifetime jillds and profitability of dairy cattle / A. J. McAallister, A. J. Lee, B. Batra [et al.] // J. Dairy Sci. 1994. 77. N₂ 8. P. 2400-2414. 24
- 11. Zarnseki A. Wplejnej laktacji, wieku i sezonu ocielenia na uzytkowosc mleczna krow w obredie stad / A. Zarnseki, J. Jamrozik, S. Mroziec // Rock. nauk rol. B. $-1991. N_{\odot} 3. P. 251-268.$ 25