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1 Introduction

In the middle of the twentieth century, a new scientific and technical direction began
to form in the most developed countries of the world. By the 1970s it became known
as the thin films physics (FTP). The complete notion of the physics and technology
of thin films of this time is given in the encyclopedic edition [1, 2]. At the end of
the twentieth century, the FTP became a strong scientific basis for both applied tech-
nical directions that provide the further development of traditional microelectronics
(nanoelectronics) and new material science directions in solid state physics called
nanotechnology (ion-plasma technologies for creating and modifying surfaces, etc.
[3—10]. And then a rather strange situation arose, when despite the determining influ-
ence of the FTP on the development of the majority of modern science-intensive tech-
nologies, in the FTP itself did not found the attainment that pretended for universal
scientific recognition. And only in 2007, A. Fert and P. Griinberg for the discovery
of the giant magnetoresistance effect in the FTP was awarded the Nobel Prize in
Physics [11-13].
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The giant magnetoresistance effect (GMR) is the galvanomagnetic quantum
mechanical effect observed in specially created multilayer film objects, which con-
sist of a system of magnetic and non-magnetic conducting alternating layers. The
thickness of such layers is usually about units and tens of nanometers. The effect
1s manifested in the fact that the electrical resistance of such objects when they are
introduced into a magnetic field (magnetoresistance MR) significantly changes. The
relative change in the electric resistance value § = AR/Ry, where AR = R — Ry (R
1s the electrical resistance of the conductor in the magnetic field, Ry is the electrical
resistance of the conductor in the absence of a magnetic field) is one units, tens and
even hundreds of percent depending on the material of the layers, number of layers
and temperature. Since this is several orders of magnitude larger than the magnetore-
sistance of massive natural conductors, hence the name is giant magnetoresistance.

Ower the past 20 years, research topics in the field of GMR have not lost their
relevance and continue to be of interest to researchers [ 14-24]. Some practical aspects
of using the GMR eftect are presented in [25-28].

2 Experimental Details

In the simplest case, the GMR effect is realized in CIP geometry in three-layer film
objects (FO) of type FM/NM/FM, where FM is a layer of ferromagnetic metal (Co),
NM is a layer of non-magnetic metal (Cu) [14, 16]. Depending on the thickness of
the layers and the heat treatment, the magnitude of the effect is § = 1-4%. Such
three-layer Co/Cu/Co films with GMR are offered by us for demonstration and study
of the GMR effect in higher education institutions in the field of physics. electronics
or magneto-electronics. We received a certificate from the Ministry of Education and
Science of Ukraine on the recognition of compliance with pedagogical requirements
No 06/029 dated June 24, 2014, for a product “Film objects for demonstration and
study of the giant magnetoresistance effect”.

FO is obtained by methods of layer vacuum spraying of metals (Cr, Cu, Co) on
glass substrates. The FO consists of (Fig. 1) from the film resistor (3) (active part
of the FO) and contact pads (2) for fixing the measuring conductors. Film resistors
in the substrate plane have dimensions of 2 x 10 mm and are obtained by vacuum
spraying Co, Cu. The substrates are polished glass plates (1) 25 x 25 mm 1n size.
On each plate two identical film resistors (working and backup) are sprayed.

The contact pads are made using the vacuum layer spraying Cr and Cu. The layer
of chrome thickness up to 50 nm 1s applied to the glass first and provides adhesion to
the surface of the glass of the next copper contact layer thickness up to 150 nm. The
contact pads after spraying are incubated in a vacuum to a temperature of 400 *C to
provide their mechanical strength. The conductors for connecting the instrument to
measure the electrical resistivity of the film resistor can be connected to such contact
pads or soldering or purely mechanically using spring clamps.

During the demonstration and study of the GMR phenomenon, the change in the
electrical resistance R of the film resistor in an external magnetic field by induction
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Fig. 4 The dependence of the magnetic resistance of film resistors on the induction of an external
magnetic field: a resistor is single layer Co film (typical AMRY); b resistor is three-layer film
Co/CufCo (typical GMR)

Geet the dependence of the value of the electrical resistance of the film resistor on
the magnitude of the induction of the magnetic field Rpp = Rpp(Ti’}). To do this,
turn on the power supply of the magnetic system and, step by step, increasing the
current (increasing the magnetic field induction) with a small increment, record
the ohmmeter at each step.
Lock the ohmmeter indications after reaching the magnetic field induction value
B = 100 mT and start with a small incremental step to reduce the current (to
reduce the magnetic field induction) through the coils of the magnetic system to
zero, again capturing at each step the ohmmeter indications.
Turn off the power supply of the magnetic system. Change the direction of induc-
tion of the magnetic field in the magnetic system (o the opposite (change the
polarity of the power supply) and again repeat the measurement of the electri-
cal resistance ol the sample in accordance with paragraphs 4 and 5 (Get the
dependence Rpp = R,-.,[—ﬁ]}_
According to the results of the measurements, construct a complete loop of the
magnetoresistive effect for the longitudinal magnetoresistance Rpp, that is to

ﬁ.
construct the two branches of the dependence Rpp = Rpp( B ) as for the current

flowing through the film resistor in the direction of the vector B (Rpp = Rpp( B ))
and for the current flowing through the film resistor in the direction opposite the

—~ —
vector B (Rpp = Rpp(— B )).
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3.2 Transverse Magnitude (Dependence R- = R. (B))

To measure the transverse magnitude resistance K-, place the FO so that the direction
of induction of the magnetic field of the magnetic system is perpendicular to the
direction of flow of the electric current through the film resistor (Fig. 4b). Repeat the
measurement for this position of the film object in accordance with p. 1-6 and, based
on the results of measurements, construct a complete loop of the magnetoresistive
effect for the transverse magnetoresistance K. (construct a complete graph of the
dependence R| = R {?]similar to item 7).

Measurement carry out of the magnetic resistor for both PO with a single layer
film resistor from Co and PO with a three-layer film resistor from Co/Cu/Co.

4 Results and Discussion

The obtained results of measurements of the MR must be expressed in percent using
the formulas:
Longitudinal MR:

_ AR R — Ry

Ry Ry

9 (1)

where Rpp is the electrical resistance of the resistor for longitudinal geometry of
measurements (Fig. 3a); Ry 1s the electrical resistance of the film resistor in the
absence of a magnetic field;

Transverse MO:

6 = — = — , (2)
Ry Ry

where R. 1s the electrical resistance of the film resistor for transverse measurement
geometry (Fig. 3b).

According to the results of the measurements, construct a complete magnetic
resistor loop (p. 7) (dependency graphs AR /Ry = AR /Ry(B) and AR, /Ry =
ﬂRL;‘H”{E] for resistors from single layer Co film and three layer film Co/Cu/Co).

In Fig. 4 illustrates typical full-magneto-resistive loops for such films.

For film single-layer resistors from Co (Fig. 4a), there is a positive longitudinal
PP (electrical resistance is increasing) and a negative transverse 1 (electrical resis-
tance decreases) magnetoresistance, which is a demonstration of AMR inherent in
homogeneous ferromagnetic metals, both in massive and film conditions.

For a three-layer film resistor Co/Cu/Co (Fig. 4b), only a significant decrease in
the electrical resistance (the ratio d = JLR/Ry is less than zero) is observed regardless
of the direction of the applied magnetic field, current and sample orientation (absence
of anisotropy of the magnetoresistance). This is a characteristic feature of the GMR
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and allows a simultaneous change in the orientation of the magnetic moments of the
film resistor elements (layers separated by a thin nonmagnetic layer Cu).

Compare the obtained dependencies in the case of AMR and GMR. 5et the dif-
ferences and determine the maximum GMR percentage.

5 Conclusions

The set of film objects of CIP-geometry created by us enables us to demonstrate and
study in the courses of general physics, electronics, or magnetoelectronics, using the
available simple equipment, as an ordinary anisotropic magnetoresistance (single
layer film sample Co, Fig. 4a) and GMR (three-layer film sample Co/Cu/Co, Fig. 4b),
which allows students to get acquainted with the physical effect of GMR.

Each sample (film object) has its own passport, which specifies its characteristics
(composition electrical resistance, GMR amplitude, saturation field, coercive force,
etc.) and a detailed instruction for demonstrating and studying the GMR effect.

In conclusion, the following should be noted. The GMR effect is experimentally
discovered at the end of the twentieth century and the authors of the discovery in
2007 were awarded the highest scientific award—the Nobel Prize in Physics—is
a fundamentally new physical phenomenon for artificially created macrosystems
which structural elements have nanoscales and spin conduction electrons in which
plays a main role.

[ts practical use is one of the components of nanotechnology and spintronics, and
the proposed set of film objects and the above-described method of their research,
n our opimon, allow them to acquaint with them students of physical and techmcal
specialties of universities.
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