V. B. Tarelnyk, O. P. Gaponova, G. V. Kirik, Ye. V. Konoplianchenko, N. V. Tarelnyk, and M. O. Mikulina, Cementation of Steel Details by Electrospark Alloying, *Metallofiz. Noveishie Tekhnol.*, *42*, No. 5: 655–667 (2020) (in Ukrainian), DOI: 10.15407/mfint.42.05.0655.

https://mfint.imp.kiev.ua/ru/abstract/v42/i05/0655.html

Цементация стальных деталей электроискровым легированием

В. Б. Тарельник11, О. П. Гапонова22, Г. В. Кирик11, Т. В. Коноплянченко11, Н. В. Тарельник11, М. А. Микулина11

11Сумский национальный аграрный университет, ул. Герасима Кондратьева, 160, 40021 Сумы, Украина

22Сумский государственный университет, ул. Римского-Корсакова, 2, 40007 Сумы, Украина

Получена: 26.12.2019; окончательный вариант - 02.04.2020.Скачать: PDF

Рассмотрен способ цементации методом электроискрового легирования (ЦЭИЛ). Исследовались образцы из стали 20. В качестве методов исследования использовали металлографический, дюрометрический, микрорентгеноспектральный анализы и исследования шероховатости поверхности. Показано, что традиционная технология ЦЭИЛ графитовым электродом не позволяет получить покрытия высокого качества. Предложена новая технология ЦЭИЛ, заключающаяся в поэтапной обработке образцов: на первом этапе осуществляется ЦЭИЛ поверхности образца в соответствии с выбранной энергией разряда и с производительностью 1 см22/мин; на втором этапе на сформированную на первом этапе поверхность детали наносят, тщательно втирая, порошок графита в виде суспензии, изготовленной в соотношении ≅≅80% порошка графита и 20% вазелина; на третьем этапе, не дожидаясь высыхания, проводят ЦЭИЛ обработанной на втором этапе поверхности, причем на том же режиме и с такой же производительностью, как и на первом этапе. Сравнительный анализ качественных параметров слоя после традиционной и предлагаемой технологий ЦЭИЛ показал, что после обработки поверхности по предлагаемой технологии шероховатость поверхности уменьшается с 8,3-9,0 мкм до 3,2-4,8 мкм, увеличивается сплошность легированного слоя до 100% и глубина диффузионной зоны углерода до 80 мкм, а также микротвёрдость «белого» слоя и его толщина до 9932 МПа и до 230 мкм соответственно.

Ключевые слова: электроискровое легирование, цементация, покрытие, микроструктура, микротвёрдость, шероховатость, рентгеноспектральный анализ.

URL: http://mfint.imp.kiev.ua/ru/abstract/v42/i05/0655.html

PACS: 62.20.Qp, 68.35.Ct, 68.35.Dv, 68.35.Fx, 68.35.Gy, 81.65.Lp, 81.65.Ps