
TPD-MS method for assessing the degree of dispersion of calcium carbonate particles in composites of the "Calcium Carbonate : Organic Matrix"

<u>V.D. Chivanov</u>¹, O.G. Bordunova², E.N. Yadgorova², H.O. Petrenko², R.V. Dolbanosova², O.O. Chekh², O.M. Kalinkevich¹, S.N. Danilchenko¹, Ya.V. Trofimenko¹, V.K. Zaporozhets¹, A.O. Stepanenko³

¹Institute of Applied Physics, NAS of Ukraine, 58 Petropavlovskaya Str., Sumy 40030, Ukraine, vadym58@i.ua ²Sumy National Agrarian University, 160 Gerasim Kondratyev Str., Sumy 40021, Ukraine, ³Sumy State University, 2 Rimsky-Korsakov Str., Sumy 40007, Ukraine

This paper presents the results of studying the composites "CaCO3 - protein" by the method of temperature-programmed desorption (TPD-MS) [1]. It has been proven experimentally that the location of the carbon dioxide (CO₂) release peak during the thermal destruction of CaCO₃ depends on the isoelectric point (pI) of the protein that is part of the composite. For example, the peak of CO₂ release from the "CaCO₃ - immunoglobulin G (pI 6.4)" composite is located in the 640-650 °C region, and a similar CO₂ peak of the composite "CaCO₃ -cytochrome C (pI 10.7)" is in the 540-550 °C region (Fig.). This is due to both the size of the CaCO₃ particles and their location in the composite.

Fig. Thermogram of CO₂ release (m/z = 44) by thermal decomposition of sample "CaCO₃ – Immunoglobulin G" (*a*) and "CaCO₃ – Cytochrome C" (*b*) composites

1. N. Koga, in. S. Vyazovkin and N. Koga (Eds), Handbook of Thermal Analysis and Calorimetry. Recent Advances, Techniques and Applications, Elsevier B.V., 2018, vol. 6, p.213.