ПРИМЕНЕНИЕ СВЯЗКИ ПРОГРАММ REVIT STRUCTURE И ROBOT STRUCTURE ANALYSIS ПРИ ПРОЕКТИРОВАНИИ ЗДАНИЙ ИЗ МОНОЛИТНОГО ЖЕЛЕЗОБЕТОНА

Симонов С.С. – главный конструктор М&M Group, главный эксперт ГК «ИНФАРС», Autodesk Approved Instructor

Срибняк Н.Н. – к.т.н., доцент, Сумский национальний аграрный университет

В статье рассматриваются возможности совместной работы программных комплексов «Revit structure» и «Robot structure analysis» при проектировании зданий из монолитного железобетона.

С развитием и усовершенствованием программ, реализующих численные методы расчета конструкций, актуальным для инженераконструктора становится использование в своей трудовой деятельности современного инструментария, позволяющего наиболее легко, быстро и эффективно решать задачи расчета и конструирования.

И действительно, создание расчетной схемы является одним из самых трудоемких и ответственных процессов на всех этапах проектирования. Так, некоторые расчетные схемы в ПК Lira, Scad приходится моделировать «вручную», используя лишь возможности по их созданию, предусмотренные самим программным комплексом. В этих программах удобно рассчитывать некую отдельную конструкцию (фундамент, плитные конструкции, конструкции покрытия — балки, фермы).

Возможен импорт расчетных схем из графического редактора Autocad. Однако в дальнейшем схемы эти все равно приходится дорабатывать «вручную», что требует много времени и весьма трудоемко.

Очень важным при создании расчетной схемы является учет совместной работы всех элементов здания. Решение этой задачи достигается путем создания расчетной схемы всего здания в целом, т.е физическая («чертежная») модель должна соответствовать расчетной модели (схеме).

Усилия и напряжения, полученные в элементах такой «комплексной» схемы, будут более объективными в сравнении с усилиями, полученными при расчете отдельных элементов с отдельно заданными для них граничными условиями и отдельно приложенными к ним нагрузками.

Цель статьи — краткий обзор возможностей таких программных комплексов как Revit structure и Robot structure analysis на примере расчета многоэтажного здания из монолитного железобетона.

Для различных стадий проектирования существуют версии Revit. Для инженеров-проектировщиков был предложен Revit Structure (далее просто Revit), который позволяет на основе чертежей AutoCAD создать информационную 3D-модель всего здания и экспортировать ее в программу Robot structure analysis professional (далее просто Robot).

В Robot эта информационная модель становится уже расчетной (рис.1). После небольших дополнений (таких как, например, задание основы для здания) получаем модель, готовую для расчета.

Итак, Robot предоставляет в распоряжение проектировщика полный набор инструментов для расчетов и анализа конструкций зданий любого размера и сложности.

Используя связку этих программ, рассмотрим процес расчета на примере многоэтажного здания из монолитного железобетона.

Рис.1 При экспорте информационной модели (a) из Revit в Robot получаем расчетную модель (б)

На первом этапе **формируем информационную модель** в программе Revit.

По данным генплана строим поверхность (основу) для того чтобы «посадить» будуще здание на топосъемку .

На основе архитектурных чертежей Autocad вычерчиваем в Revit разбивочные оси и высотные отметки (чтобы исключить дальнейшее не совпадение в размерах), а далее по технологии внешних ссылок из отдельных файлов AutoCAD «подгружаем» на определенные высотные уровни планы, разрезы.

На полученных планах «возводим» каркас здания. С помощью команды «Column» («колонны») указываем привязку колонны и в каких уровнях она предусмотрена. Имеется возможность «вручную» указать места, где колонна проектируется. В случае необходимости есть возможность сгенерировать колонны в пересечении осей, выбрав соответствующую опцию. Команда «Column» также позволяет выбрать тип колонн (железобетонные или стальные) и соответствующие размеры сечения или профиль.

С помощью команды «Wall» («несущие стены») выбираем тип стены — однослойная или многослойная. В состав конструкции стены можно включить при необходимости и утеплитель и штукатурку. Множество типоразмеров стен позволяет выбрать конструкцию необходимых размеров. По аналогии с колоннами выполняем привязку стен к высотным уровням.

Перекрытия (опция «Floor») могут, как стены, однослойными многослойными ипи Имеется возможность скомпоновать сразу и конструкцию пола и конструкцию подвесных потолков, которые будут находиться в составе одного элемента. По аналогии с колоннами и стенами выполняется привязка в уровнях. В программе, в случае необходимости, предусмотрено проектирование и наклонных плит.

Команда «beam» («балка») позволяет создать балочное перекрытие в различных вариантах. С помощью этой опции можно выбрать необходимые типоразмеры балок, вид балки (железобетонная или металлическая). Также в программе существует инструментарий, позволяющий нарисовать конструкцию необходимой конфигурации (прямую или криволинейную). Существует функция генерации балок по выделенным осям, что при большом их количестве значительно экономит время и силы проектировщика.

Аналогичным автоматизированным способом есть возможность задать конструкции фундаментов и других элементов.

Поскольку создание информационной модели здания в Revit осуществляется автоматизировано, нет необходимости создавать элементы «вручную», то появляется время для вариантного

проектирования той или иной конструкции. Различные конструктивные варианты или различные расчетные схемы создаются внутри одного проекта.

Например, рассмотрим три варианта балочного перекрытия: кессонное перекрытие, перекрытие с капителями, перекрытие с капителями и с балками. Все варианты в составе одного файла из Revit можно отправить в Robot, выполнить расчет, подобрать арматуру и, соответственно, определить наиболее экономичный вариант, который и принимается в дальнейшее проектирование.

В Revit имеется возможность связывать файлы через внешние ссылки и работать внутри одного проекта удаленно: точно так, если бы проектировщики сидели в одном помещении и за одним столом. Существует и вторая технология, позволяющая работать в таком формате — создание центрального файла с возможностью для отдельных проектантов работать в локальных копиях.

Revit позволяет создавать не только 3D виды здания, но и моделировать весь процесс возведения здания, начиная от «земли» и заканчивая «крышей» (рис.2). Под каждую стадию проектирования можно выпустить альбом чертежей со спецификациями. Существует возможность сделать сводную спецификацию расхода материалов для конкретного этапа возведения здания.

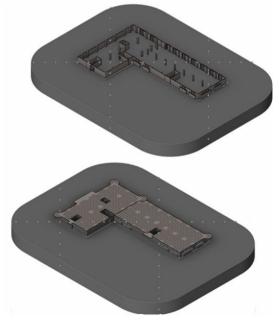


Рис.2 Проектирование во времени или 4 D проектирование

Среди возможных **нагрузок** в Revit предусмотрены: сосредоточенная нагрузка, линейно распределенная нагрузка и нагрузка, распределенная по площади нагружения. Кроме того существует возможность задания «нагрузки с основаним». Например, если задать линейно-распределенную нагрузку на косоур, то в случае изменения длины косоура (увеличения или уменьшения) или изменения его уклона, нагрузка автоматически также изменится на некоторую длину или поменяет свое положение в пространстве.

Возможно также задать нагрузку, описываемую не константой, а некотрой линейной функцией, то есть нагрузку, переменную как по линии, так и по площади (треугольная или трапецивидная). Эта опция помогает при моделировании, например, снеговых мешков. В частности, на конструкции покрытия существует разуклонка поверхности: в зоне около воронки собирается до 100 кг снега, а возле парапета может оказаться почти вся тонна. Такой «разброс» в нагрузках на поверхности покрытия может бать задан с помощью инструментария задания нагрузок в Revit.

Кроме того имеется возможность моделировать нагрузки различного типа и продолжительности действия: статические, динамические, ветровые, сейсмические и др.

После создания информационной модели здания в Revit и экспорта ее в Robot, все жесткостные характеристики конструктивных элементов переносятся также без изменений (см. рис.1). Информация (жесткости, граничне условия, загружения), заданная при создании модели в Revit, отображается в диспетчере объектов Robot.

Такая функция важна и удобна в случае, если происходят изменения в архитектурной части проекта, влекущие за собой

изменение нагрузок. Тогда остается внести изменения в информационную модель и снова экспортировать ее для перерасчета в Robot.

После того как модель здания из Revit оказывается в Robot, проектировщику остается лишь задать грунтовое основание под объектом (задать его характеристики, определить глубину сжимаемой толщи и ее размеры). Разбить конечноэлементную сетку на массиве грунта можно как «вручную», так и автоматически с помощью «диспетчера расчетов». После этого модель полностью готова к расчету.

программе Robot функция B есть полезная отключения «неинтересующих элементов», позволяет, что пользуясь предварительными настройками, момент времени В представить конструкцию в том или ином виде (рис.3).

Например, для анализа можно отключить «опоры», «сетку». Данное упрощенное отображение позволяет просмотреть 3D модель в разы быстрее, чем при визуализации всех элементов.

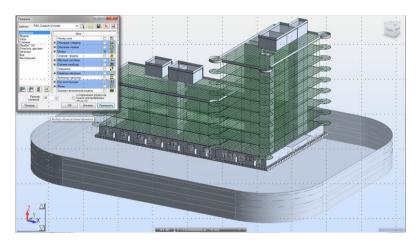


Рис. З Визуализация отдельных элементов объекта

Диспетчер расчетов Robot может принять в очередь расчета одновременно 5-6 задач и выполнить их последовательно. Возможен расчет и «паралельным методом», когда несколько задач выполняются одновременно. Однако такой способ требует значительных ресурсов памяти машины и ее мощного процесора.

После анализа полученных в элементах усилий и напряжений, необходимо подобрать для них арматуру. Рассмотрим порядок действий на примере подбора арматуры для колонн.

Среди типов армирования колонн в проектируемом здании можно выделить армирование для колонн первого этажа: для угловых колонн, армирование для колонн крайнего ряда, армирование для колонн среднего ряда. Аналогично колонны верхних этажей можно сгрупировать по приведенным выше типам армирования. Всего запроектировано 40 колонн, к которым можно применить 6-7 типов армирования. Но что делать, если колонн гораздо больше (например, 300-400)? Или, если два этажа имеют сетку колонн 8х16, а последний этаж – 16х16? Определиться, где какая колонна, довольно тяжело.

Весь анализ усилий в колоннах можно выполнить с помощью штатних функций Robot, не прибегая за помощью к электронным таблицам Exell.

Следует отсортировать все элементы в соответствии с теми усилиями, которые в них действуют. Например, сортировку можно произвести по таким критериям — N_{max} (максимальная продольная сила) и соответствующий ей М (изгибающий момент), действующие в одной плоскости; N_{max} и соответствующий ей М, действующие в другой плоскости; N_{max} и соответствующий ей М, действующие сразу в двух плоскостях. Аналогичная сортировка элементов может быть выполнена по критерию « M_{max} и соответствующая ему N» для двух плоскостей поочередно.

Все элементы по такому принципу сортируются в несколько групп. Подбор арматуры выполняется для каждой из групп. Например, в группе находится 20 элементов. Находим в группе элемент, усилия в котром будут максимальны. На эти усилия производится подбор армирования с последующим его назначеним всем остальным элементам этой выборки.

По самим результатам расчета можно выполнить предварительный анализ внутренних усилий. В пояснительной записке, которую можно просмотреть до формирования отчета, выдаются геометрические характеристики сечений колонн, проверочные расчетные формулы.

Далее возникает задача, в каком виде результаты статического расчета выдать конструктору?

Первый вариант — встроенный в Robot редактор чертежей дает возможность при «горящей стройке» распечатать и отдать на производство рабочие чертежи непосредственно из программы. Недостатком такого решения является то, что нормоконтроль в такой документации отсутствует.

Второй вариант решения задачи — воспользоваться редактором чертежей ASD (AutoCAD Structural Detailing). Таким образом формируется единая эргономичная среда проектирования и расчетов. В редакторе есть возможность чертежи, сформированные Robot, доделать в соответствии с требованиями нормоконтроля.

Третий вариант решения задачи — армирование, подобранное программой Robot, возможно экспортировать в Revit. В среде Revit для инженера уже остается минимум «ручной» работы — подобранная арматура отображается уже «твердотелой». Остается необходимость закомпоновать виды, проставить размеры, сделать выноски. Спецификации считаются программой автоматически.

Балки рассчитываются по такой же примерно схеме, как и колонны. С конструкциями типа плит и стен ситуация выглядит «более трудоемкой», поскольку создание рабочих чертежей для конструкций, аппроксимированных пластинчатыми конечными элементами, непосредственно в Robot не предусмотрено. Однако существующая в Robot шкала фильтров может быть настроена таким образом, что фонового, арматура, диаметр которой менше скрывается, а отображаются (стены), требующие только зоны плиты дополнительного армирования.

Второй вариант заключается в том, что армирование плит можно представить не изополями, а изолиниями.

Третий вариант – экспортировать всю информацию, полученную в Robot, в редактор ASD — вертикальное решение на базе AutoCAD, и доработать чертежи уже в этом редакторе.

Итак, заканчивая краткую выборочную характеристику рассматриваемых программных комплексов, можно сделать вывод, что благодаря связи между AutoCAD Structural Detailing, Revit structure и Robot Structural Analysis Professional обеспечивается обмен данными и доведение проектов до логического завершения. Это повышает качество совместной работы специалистов и еще раз подчеркивает ценность технологии информационного моделирования зданий для проектировщиков строительных конструкций.

Література

- 1.http://www.rsa4all.com/
- 2.http://www.autodesk.ru/products/autodesk-simulation

family/features/robot-structural-analysis.view-list

- 3. http://ru.wikipedia.org/wiki/Revit
- 4. http://www.autodesk.com/products/autodesk-revit-family/overview

Аннотация. В статье рассматриваются возможности совместной роботы программных комплексов Revit structure и Robot structure analysis при проектировании зданий из монолитного железобетона

Annotation. The article considers the possibilities of joint work software systems «Revit structure» and «Robot structure analysis» at designing of monolithic reinforced concrete buildings.

Анотація. У статті розглядаються можливості сумісної роботи програмних комплексів Revit structure і Robot structure analysis при проектуванні будівель із монолітного залізобетону.

Ключевые слова: Robot structure analysis professional, Revit structure, AutoCAD Structural Detailing, расчетная модель, информационная модель, балка, плита.

Ключові слова: Robot structure analysis professional, Revit structure, AutoCAD Structural Detailing, розрахункова модель, інформаційна модель, балка, плита.

Keywords: Robot structure analysis professional, Revit structure, AutoCAD Structural Detailing, design model, information model, beam, plate.