ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕХНОЛОГИЧЕСКИХ ФАКТОРОВ НА СНИЖЕНИЕ СОДЕРЖАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ЯДРЕ ПОДСОЛНЕЧНИКОВОГО СЕМЕНИ

Д.О. Бидюк, к.т.н., доц. Л.З. Шильман, к.т.н., проф., Ф.В. Перцевой, д.т.н., проф.

Сумской национальный аграрный университет, г. Сумы

П.В. Гурский, к.т.н., проф.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенка, г. Харьков

Д.И. Дмитриевский, д.фарм.н., проф.

Национальный фармацевтический университет, г. Харьков

Последние увеличением объемов производства года отмечены полуфабрикатов, блюд и кулинарных изделий на основе творога. На фоне нынешних кризисных явлений в молочной отрасли Украины, которые заключаются в возрастании дефицита молочного сырья, в частности, творога [1, 2], а также в условиях отрицательных изменений в структуре питания населения Украины и развитии дефицита незаменимых нутриентов [3, 4] актуализируется вопрос альтернативных источников обеспечения предприятий поиска ресторанного хозяйства молочным сырьем и расширения ассортимента за счет создания новой продукции с повышенной питательной ценностью [1].

Особая роль при этом отводится новым продуктам переработки растительного сырья, которые содержат незаменимые пищевые вещества, в частности, масличным культурам [5]. Среди масличных культур большой резерв функциональных компонентов (белка, масла) и богатый химический состав имеет ядро подсолнечникового семени (ЯПС), в частности, кондитерского типа, которая является ведущей культурой на Украине и традиционно используется в цельном или измельченном виде во многих

технологиях пищевой продукции [6]. Анализ рынка кулинарной продукции на основе творога показал, что ЯПС в ее составе не используется. Следует отметить, что основным фактором, который сдерживает внедрение технологий кулинарной продукции на основе творога с внесением ЯПС, является отсутствие научных основ его использования.

Нами разработана технология растительного наполнителя эмульсионного типа на основе ЯПС (далее – растительного наполнителя) [7] для использования ее в сочетании с нежирным творогом и создания полуфабриката – продукта творожного [8], который может быть использован в составе кулинарной продукции.

Следует отметить, что одной из важных проблем, которая ограничивает использование ЯПС в составе пищевой продукции, и, особенно, в кулинарной продукции на основе творога, является присутствие в нем фенольных соединений, в частности, хлорогеновой кислоты (до 70 % от общего содержания фенольных соединений) [9-10]. Находясь в составе пищевого продукта в условиях тепловой обработки, фенольные соединения приводят к снижению биологической ценности белка и потемнению пищевого продукта [9-10].

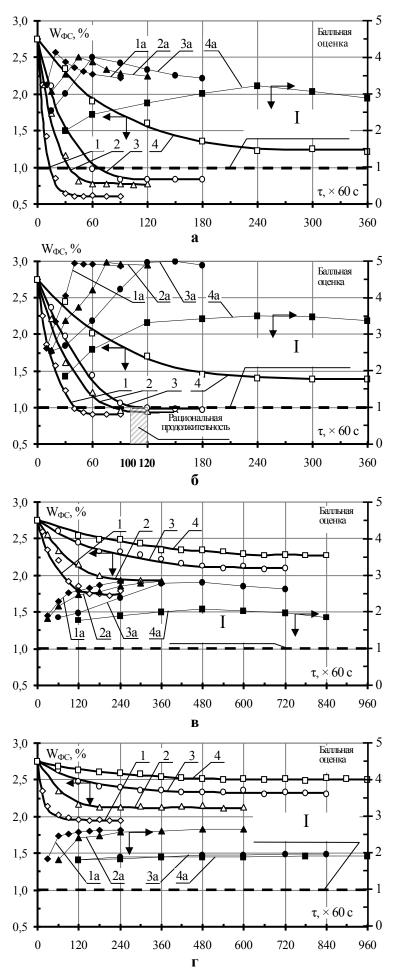
Проблемам удаления фенольных соединений посвящены много работ отечественных и зарубежных ученых [10, 11]. Следует подчеркнуть, что одной из важных задач создания новой кулинарной продукции на основе творога с использованием ЯПС является обеспечение высоких органолептических показателей, в частности, светлого ее цвета. Вышеприведенное предопределяет необходимость решения вопроса значительного снижения содержания фенольных соединений в ЯПС.

Для снижения количества фенольных соединений в ЯПС нами предложено проведение его гидротермической обработки в растворе лимонной кислоты. Таким образом, задачами исследований было:

- установление влияния основных технологических факторов на снижение содержания фенольных соединений в ЯПС во время его гидротермической обработки;
 - проведение сенсорного анализа органолептических показателей

гидротермически обработанного ЯПС;

научное обоснование параметров процесса гидротермической обработки ЯПС.


Предыдущими исследованиями была установлена необходимость удаления семенной оболочки ЯПС. С учетом известных факторов, которые влияют на процесс экстрагирования [12], была выбрана дисперсность подготовленного ЯПС – целое и дробленое с размерами частиц в пределах (3- $(2-3)\times10^{-3}$ 4)× 10^{-3} . $(1-2)\times10^{-3}$ И M, которые были получены путем фракционирования ЯПС после удаления из него семенной оболочки. Гидротермическую обработку подготовленного фракционированного ЯПС проводили путем его замачивания в растворах лимонной кислоты с pH 4,0±0,1 при температурах 20 ± 2 , 40 ± 2 , 60 ± 2 , 80 ± 2 °C. На основании анализа известных научно-технических работ [13] было установлено, что для удаления фенольных соединений рациональным является соотношение твердое тело: экстрагент как (1:10-15). С учетом этого гидромодуль процесса гидротермической обработки (соотношение ЯПС: кислотный растворитель) на первом этапе исследования выбран как 1:10 с возможностью его дальнейшего уточнения.

Определение общего количества фенольных соединений по хлорогеновой кислоте проводили колориметрическим методом с использованием реактива Фолина-Дениса [14].

По приведенным данным (рис. 1) видно, что снижение остаточного содержания фенольных соединений происходит с повышением температуры экстрагирования и уменьшением размеров частиц фракционированного ЯПС. Причем при температурах 60±2°C и 80±2°C удаление фенольных соединений происходило более интенсивно, чем при температурах 20±2°C и 40±2°C.

Наиболее продолжительной была экстракция фенольных соединений из целых ЯПС, которое, очевидно, связано с целостностью его клеточной структуры и осложнением диффузионых процессов.

Эффективность процесса удаления фенольных соединений оценивалась по органолептическим показателям гидротермически обработанных фракций ЯПС.

В результате экстрагирования образцы ЯПС в разной степени освобождались от фенольных соединений, приобретали разный цвет, вкус и запах.

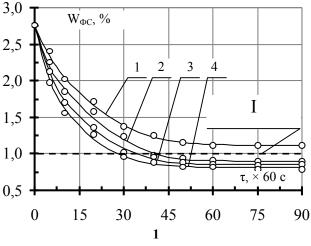
Следует отметить, что на формирование органолептических показателей образцов влияли температура и продолжительность

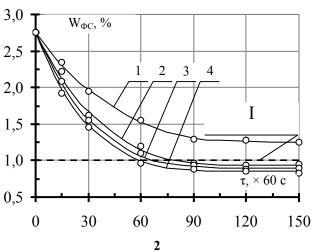
гидротермической обработки, а размер также частиц фракционированного ЯПС. Для определения рациональных пределов этих параметров была проведена органолептическая оценка исследуемых образцов в измельченном состоянии после гидротермической обработки. С были целью проведены исследования, направленные на разработку количественной шкалы органолептической оценки гидротермически обработанных фракций ЯПС 5-балльной ПО шкале.

Рис. 1. Динамика остаточного содержания фенольных соединений $(W_{\Phi C}, \text{ мас. } \%)$ в фракционированном ядра подсолнечникового семени с раз частиц, × 10⁻³ мерами 1 – (1-2),(2-3), (3-4).2-3 – 4 – целые, при температурах, °С: $a - 80 \pm 2$, $6 - 60 \pm 2$, $B - 40 \pm 2$, $\Gamma - 20 \pm 2$ и сенсорная оценка органолептических показателей этих образцов, соответственно - 1a, 2a, 3a, 4a. I содержания рациональный предел фенольных соединений

Следует подчеркнуть, что согласно полученным результатам была установлена связь между остаточным содержанием фенольных соединений, цветом гидротермически обработанного ЯПС и балльной оценкой. Так, при содержании фенольных соединений менее 1,0% в пересчете на сухое вещество образцы ЯПС характеризовались белым цветом или с незначительным светло-серым оттенком, при содержании фенольных соединений в пределах 1,0-1,3% – светло-серым, при 1,3-1,7% — серым, при 1,7-2,2% — темно-серым и при содержании этих соединений более 2,2% образцы имели темно-серый цвет. С учетом приведенных данных была установлена рациональный предел содержания фенольных соединений (рис. 1, I), достижение которого позволяло получать дробленое фракционированное ЯПС после гидротермической обработки с белым или с незначительным светло-серым оттенком и определяло продолжительность и температуру процесса.

На основе разработанной шкалы органолептической оценки с помощью экспертов с учетом коэффициентов весомости для показателей был проведен сравнительный сенсорный анализ органолептических показателей исследуемых образцов ЯПС во время гидротермической обработки. В ходе сенсорных исследований было установлено, что в формировании органолептических показателей образцов ЯПС определяющим показателем является их цвет и вкус. В табл. 1 приведены данные относительно технологических режимов процесса гидротермической обработки, при которых образцы фракционированного ЯПС получили наивысшую балльную оценку.


Нужно подчеркнуть, что кривые балльной оценки носили экстремальный характер при температурах $60\pm2^{\circ}$ С и $80\pm2^{\circ}$ С (рис. 1, а, б – кривые 1a-4a), а также $40\pm2^{\circ}$ С (рис. 1, в – кривые 3a, 4a), что связано с ухудшением вкуса и запаха при гидротермической обработке выше указанной продолжительности (табл. 2). Для образцов ЯПС, гидротермически обработанных при температурах $20\pm2^{\circ}$ С и $40\pm2^{\circ}$ С (рис. 1, г – кривые 1a-4a, в – кривые 1a, 2a), балльная оценка достигала максимума при максимальной продолжительности процесса гидротермической обработки.


Таблица 1 Сенсорные исследования органолептических показателей образцов ЯПС во время его гидротермической обработки

	Балльная оценка органолептических показателей (b) и продолжительность							
Температура	гидротермической обработки (τ), × 60 с при размерах частиц ядра							
гидротермической	подсолнечникового семени (d), × 10 ⁻³ м							
обработки, °С	d (1-2)		d (2-3)		d (3-4)		d (целые)	
	b	τ	b	τ	b	τ	b	τ
80 ± 2	4,15	$20,0 \pm 0,5$	4,02	$45,0 \pm 1,0$	4,00	$60,0 \pm 1,5$	3,23	240 ± 5
60 ± 2	4,95	$40,0 \pm 1,0$	4,97	$75,0 \pm 1,5$	4,97	$120,0 \pm 2,0$	3,51	240 ± 5
40 ± 2	2,86	240 ± 5	2,84	360 ± 5	2,81	480 ± 10	2,09	480 ± 10
20 ± 2	2,64	180 ± 3	2,65	480 ± 10	1,99	720 ± 12	1,94	960 ± 15

Согласно полученным результатам (рис. 1, a, б) достижение рационального предела содержания фенольных соединений возможно при температурах 60±2°С и 80±2°С. При этом наивысшую балльную оценку (4,00-4,97) во время гидротермической обработки получили образцы дробленого фракционированного ЯПС с размерами частиц (1-2), (2-3) и $(3-4)\times10^{-3}$ м (табл. 2). Следует отметить, что гидротермическая обработка при температуре 80±2°С и указанной продолжительности (табл. 2) придавала исследуемым образцам ЯПС специфические вкус и запах с признаками прогорклого масла, которое, очевидно, связано с гидролитически-окислительными процессами порчи масла [15]. При этом гидротермически обработанные фракции ЯПС при температуре 60±2°C характеризовались белым цветом со светло-серым оттенком с обезличенным вкусом и запахом без привкуса и запаха масла с признаками порчи. Остаточное количество фенольных соединений в них составляло 33-36% от общего их содержания, что отвечает 0,99-0,92% сухих веществ ЯПС.

Интересно подчеркнуть, что в пределах исследуемых значений температуры и продолжительности процесса гидротермической обработки при условиях их экстремума (рис. 1, а — кривая 1) возможно удаление до 78,2% фенольных соединений. Полученные данные согласуются с литературными [10], из которых известно, что около 21% этих соединений связана с белковым комплексом ЯПС, поэтому кислотной экстракцией они полностью не удаляются.

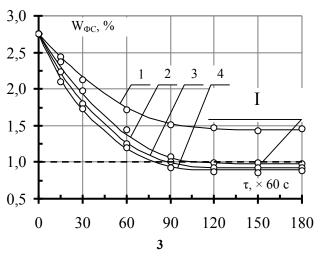


Рис. 2. Динамика остаточного содержания фенольных соединений в дробленом фракционированном ядре подсолнечникового семени с размерами частиц, \times 10⁻³ м: a-(1-2), 6-(2-3), B-(3-4) во время гидротермической обработке при гидромодуле: 1-1:5, 2-1:10, 3-1:15, 4-1:20 и температуре $60\pm2^{\circ}C$. I- рациональный предел содержания фенольных соединений

Следующим этапом явилось исследование влияния гидромодуля гидротермической процесса обработки на остаточное содержание фенольных соединений в ЯПС пределах определенных рациональных значений температуры и размеров его частиц. С этой целью было определено остаточное содержание фенольных соединений в дробленом фракционированном ЯПС с размерами частиц (1-2)×10⁻³ м, (2- $3)\times10^{-3}$ м и $(3-4)\times10^{-3}$ м во время обработки гидротермической температуре 60±2°С и гидромодуле 1:5, 1:10, 1:15 и 1:20.

По приведенным данным (рис. 2) наблюдается общая тенденция увеличения интенсивности удаления фенольных соединений и снижение остаточного их содержания с увеличением гидромодуля.

Полученные результаты позволяют утверждать, что гидротермическая обработка при гидромодуле 1:5 (рис. 2, 1, 2, 3, кривые 1) не позволяет достигнуть определенного рационального

предела содержания фенольных соединений (рис. 1, 2, I – рациональный предел содержания фенольных соединений), которая согласно предыдущим

исследованиям должна составлять не выше 1,0% (табл. 1). Остаточное содержание фенольных соединений в образцах с размерами частиц $(1-2)\times10^{-3}$ м, $(2-3)\times10^{-3}$ м и $(3-4)\times10^{-3}$ м, обработанных при этом гидромодуле, составляет соответственно 1,11-1,12,1,25-1,28 и 1,43-1,45 %.

Гидротермическая обработка при гидромодуле от 1:10 и выше обуславливает возможность получения гидротермически обработанного ЯПС с остаточным содержанием фенольных соединений до 1,0%. При этом с увеличением гидромодуля в исследуемом ряде 1:10, 1:15, 1:20 время достижения рационального предела содержания фенольных соединений уменьшается и составляет: для образцов дробленого фракционированного ЯПС с размерами частиц $(1-2)\times10^{-3}$ м соответственно (40 ± 1) , (34 ± 1) , $(30\pm1)\times60$ с, с размерами частиц $(2-3)\times10^{-3}$ м $-(75,0\pm1,5)$, (65 ± 1) и $(60\pm1)\times60$ с, с размерами частиц $(3-4)\times10^{-3}$ м $-(100\pm2)$, (90 ± 1) и $(85\pm1)\times60$ с.

Анализируя полученные данные, можно констатировать что при увеличении гидромодуля в 1,5 и 2 раза относительно гидромодуля 1 : 10 (гидромодуль 1 : 15 и 1 : 20) время достижения рационального предела содержания фенольных соединений сокращается незначительно: в 1,18 и 1,50 раза для образцов с размерами частиц $(1-2)\times10^{-3}$ м, в 1,15 и 1,25 раза для образцов с размерами частиц $(2-3)\times10^{-3}$ м, в 1,11 и 1,18 раза для образцов с размерами частиц $(3-4)\times10^{-3}$ м.

Обобщая полученные результаты экспериментальных исследований, констатировать, рациональным проведение ОНЖОМ что является гидротермической обработки дробленого фракционированного ЯПС с размерами частиц $(1-2)\times10^{-3}$, $(2-3)\times10^{-3}$ и $(3-4)\times10^{-3}$ м при температуре $60\pm2^{\circ}$ С и продолжительности не более соответственно $(40\pm1)\times60$, $(75,0\pm1,5)\times60$ и (100±2)×60 с. При этом, с точки зрения рационального использования водных взгляд, целесообразным, на наш ресурсов, является проведения гидротермической обработки при гидромодуле 1:10. Указанные технологические режимы позволяют получить ЯПС с низким содержанием фенольных соединений и высокими органолептическими показателями, в том числе светлым цветом, что удовлетворяет требованиям к растительному наполнителю и продукту творожному с его использованием.

Таким образом, разработка научно обоснованной технологии растительного наполнителя эмульсионного типа на основе ЯПС со сниженным содержанием фенольных соединений даёт возможность внедрения новых способов использования этого растительного сырья в составе кулинарной продукции на основе продукта творожного, а также будет обуславливать создание нового класса пищевой продукции с регулированными питательной ценностью, аминокислотным и жирнокислотным составом.

Список использованной литературы

- 1. Скопенко Н.С. Сучасний стан та тенденції розвитку молочної галузі України / Скопенко Н.С., Бовкун А.О., [Електронний ресурс] // Режим доступу: http://ipdo.kiev.ua/index.php? option=comcontent&view=article&id=259.
- 2. Моніторинг розвитку ринку молока та молочних продуктів України / Спілка молочних підприємств України. За ред. Бутенко М.І. V випуск. К., 2010. 100 с.
- 3. Возианов О. Ф. Харчування та здоров'я населення України (концептуальні основи раціонального харчування) // Журн. АМН України. 2002. № 4. С. 647-657.
- 4. Сердюк А. М., Гуліч М. П. Політика в галузі харчування населення головний пріоритет держави // Довкілля та здоров'я. 2002. № 3. С. 8-11.
- 5. Глаголева Л. Э. Биотехнология фитосорбентов и научно-практическое обоснование их использования в технологии пищевых продуктов: автореф. дис. ... д.т.н. / Л. Э. Глаголева. Воронеж: ФГБОУ ВПО, 2012. 44 с.
- 6. Іхно, М.П. Науково-практичні основи отримання та використання харчового безлушпинного ядра соняшника [Текст]. Дис. ... д-р техн. наук. X.: HTУ «ХПІ». 2004. 255 с.
- 7. Пат. на корисну модель 73025. Україна. МПК A23J 1/14, A23L 1/29. Спосіб отримання емульсії на основі ядра соняшникового насіння / Гурський П.

- В., Бідюк Д. О., Перцевой Ф. В. / заявники та патентовласники: Гурський П. В., Бідюк Д. О., Перцевой Ф. В. № и 2012 01723; заявл. 16.02.2012 р.; опубл. 10.09.2012 р., Бюл. № 17. 4 с.
- 8. Пат. на корисну модель 73024. Україна. МПК A23C 19/055, A23L 1/29. Спосіб отримання напівфабрикату на основі сиру кисломолочного нежирного / Гурський П. В., Бідюк Д. О., Перцевой Ф. В. / заявники та патентовласники: Гурський П. В., Бідюк Д. О., Перцевой Ф. В. № и 2012 01722; заявл. 16.02.2012 р.; опубл. 10.09.2012 р., Бюл. № 17. 4 с.
- 9. Щербаков, В.Г. Биохимия и товароведение масличного сырья. [Текст] // В.Г. Щербаков. М.: Колос, 2003. 360 с.
- 10. Щербаков, В. Г. Производство белковых продуктов из масличных семян [Текст] / В. Г. Щербаков. М. : Агропромиздат, 1987. 256 с.
- 11. Sergio Gonzalez Perez. Physico-chemical and functional properties of sunflower proteins / Sergio Gonzalez Perez. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands. 2003. 160 P.
- 12. Стабников В. Н. Процессы и аппараты пищевых производств / В. Н. Стабников, В. М. Лысянский, В. Д. Попов. М.: Агропромиздат. 1985. 503 с.
- 13. Пат. на изобретение 2310335. Россия. A23J1/14, A23J3/14, A23J3/32 Способ получения пищевого белкового концентрата из семян подсолнечника / Лобанов В. Г., Степуро М. В., Шульвинская И. В., Щербаков В. Г. 2006105617/13, заявл. 22.02.2006 г. опубл. 20.11.2007 г.
- 14. Методы биохимического исследования растений / А. И. Ермаков [и др.]; под. ред. А. И. Ермакова. 3-е изд., перераб. и доп. Л.: Агропромиздат, 1987.-430 с.
- 15. Пивоваров П. П. Теоретичні основи технології громадського харчування. Ч. III. Ліпіди та їх значення у формуванні фізико-хімічних, органолептичних показників сировини та продукції громадського харчування / Пивоваров П. П. Х. : ХДАТОХ. 2002. 90 с.