СРАВНИТЕЛЬНАЯ ОЦЕНКА ПРИМЕНЕНИЯ ЭЛЛИПТИЧЕСКИХ ИНТЕГРАЛОВ 2 – РОДА В ФОРМЕ ЛЕЖАНДРА И СФЕРИЧЕСКОЙ ТРИГОНОМЕТРИИ ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ДУГИ РЕЗАНИЯ РАБОЧИМИ ОРГАНАМИ РОТАЦИОННЫХ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН

Головченко Г. С., Калнагуз О. М.

Рассмотрены закономерности изменения длины дуги резания в зависимости от радиуса фрезерного барабана R (табл.1), подачи на один нож S (табл.2), показателя кинематического режима работы почвообрабатывающей фрезы λ (табл.3), которые определялись с применением эллиптических интегралов 2 — рода (1) и с помощью закономерностей сферической тригонометрии (2).

Длина дуги резания рабочими органами почвообрабатывающих фрез определяется по формуле:

$$l = 2R \frac{1+\lambda}{\lambda} \left[2 \int_{0}^{90^{\circ}} \sqrt{1-K^{2} \sin^{2} \varphi} d\varphi - \int_{0}^{90^{\circ} - \frac{\varphi_{1}}{2}} \sqrt{1-K^{2} \sin^{2} \varphi} d\varphi - \int_{0}^{90^{\circ} - \frac{\varphi_{2}}{2}} \sqrt{1-K^{2} \sin^{2} \varphi} d\varphi \right], \quad (1)$$

где R — радиус фрезерного барабана, м;

 λ — показатель кинематического режима работы почвообрабатывающей фрезы, $\lambda = \frac{\omega R}{\upsilon}$, здесь ω — угловая скорость фрезерного барабана, град./с;

$$\upsilon$$
 - поступательная скорость, м/с; K – модуль , $K = \frac{2\sqrt{\lambda}}{1+\lambda}$;

 φ_1 — угол между вертикалью и радиусом фрезерного барабана, направленным от точки пересечения траектории лезвия ножа с поверхностью грунта, градусы, $\varphi_1 = \arccos \frac{R-h}{R}$;

 φ_2 — угол между вертикалью и радиусом фрезерного барабана, проведенным к вершине гребня на дне борозды, градусы, $\varphi_2 = \frac{\pi}{z(\lambda-1)}$.

С помощью закономерностей сферической тригонометрии длина дуги резания определяется по формуле:

$$l_{c\phi.} = R\varphi, \tag{2}$$

где R — радиус фрезерного барабана, м; φ - центральный угол, радианы, $\varphi = \varphi_1 + \varphi_2$. Здесь φ_1 — угол между вертикалью и радиусом фрезерного барабана, направленным от точки пересечения траектории лезвия ножа с поверхностью грунта, радианы; φ_2 — угол между вертикалью и радиусом фрезерного барабана, проведенным к вершине гребня на дне борозды, радианы.

Таблица 1 — Зависимость длины дуги резания от радиуса барабана $R(h{=}0,10 \text{ м}, S{=}0,060 \text{ м}, \lambda = 6,26)$

<i>R</i> , м	z,	φ_1 ,	φ_2 ,	φ ,	φ ,рад.	<i>l</i> , м	$l_{c\phi.}$, M	l	l'	δ
	шт.	град.	град.	град.	7 71 7 1	,	∵сф. У	$\overline{l_{c\phi.}}$		
0,18	3	63° 40'	11° 24'	75° 04'	1,310	0,206	0,236	0,873	0,203	-1,45
0,24	4	54° 20'	8° 33'	62° 53'	1,097	0,227	0,263	0,863	0,226	-0,44
0,30	5	48° 40'	6° 50'	55° 30'	0,968	0,249	0,290	0,859	0,249	0
0,36	6	43° 46'	5° 42'	49° 28'	0,863	0,266	0,310	0,858	0,266	0

Таблица 2 — Зависимость длины дуги резания от подачи на один нож S $(R=0.24 m,\ h=0.10\ m,\ \lambda=6.26)$

z,	<i>S</i> , м	φ_1 ,	φ_2 ,	φ ,	φ ,рад.	<i>l</i> , м	$l_{c\phi.}$, M	<u>l</u>	l'	δ
шт.		град.	град.	град.				$l_{c\phi}$.		
8	0,030	54° 20'	4 ° 16'	58° 36'	1,023	0,212	0,245	0,865	0,211	-0,47
7	0,034	54° 20'	4 ° 53'	59° 13'	1,033	0,214	0,248	0,862	0,213	-0,46
6	0,040	54° 20'	5 ° 44'	60° 04'	1,048	0,217	0,251	0,864	0,216	-0,46
4	0,060	54° 20'	8 ° 33'	62° 53'	1,097	0,227	0,263	0,863	0,226	-0,44
2	0,120	54° 20'	17 ° 06'	71° 26'	1,246	0,257	0,299	0,859	0,257	0

Таблица 3 — Зависимость длины дуги резания от глубины возделывания h (K=0,689, R =0,24m, S=0,06m)

<i>h</i> , м	λ	φ_1 ,	φ_2 ,	φ ,	φ ,рад.	<i>l</i> , м	$l_{c\phi}$, M	<u>l</u>	l'	δ
		град.	град.	град.				$l_{c\phi}$.		
0,06	0,689	41° 25'	8 ° 33'	49° 58'	0,872	0,178	0,209	0,851	0,180	1,12
0,08	0,689	48° 10'	8 ° 33'	56° 43'	0,990	0,204	0,237	0,860	0,204	0
0,10	0,689	54° 20'	8 ° 33'	62° 53'	1,097	0,227	0,263	0,863	0,226	-0,44
0,12	0,689	60° 00'	8 ° 33'	68° 33'	1,196	0,249	0,287	0,867	0.247	-0,80

Из таблиц 1 — 3 следует, что длина дуги резания в общем виде определяется по формуле $l=\varepsilon R \, \varphi$, где $\varepsilon=\frac{l}{l_{c\phi}}$. Для зависимостей

l' = f(R, S, h) $\varepsilon = 0.86$, тогда $l' = 0.86 R \varphi$.

Определение длины дуги резания с применением эллиптических интегралов 2 — рода требует значительно больше времени, чем с помощью сферической тригонометрии. Анализируя данные таблиц 1 — 3 имеем, что относительное отклонение δ длины дуги резания в рабочем интервале параметров и режимов работы почвообрабатывающей фрезы, которая определяется по формулам (1) и (2) находится в пределах 0...1,45%.

ЛИТЕРАТУРА

1. Бронштейн И. Н., Семендяев К. А. Справочник по математике (для инженеров и учащихся втузов)/ И. Н. Бронштейн, К. А. Семендяев – М.:

Государственное издательство физико-математической литературы, 1962. – 608с.

- 2. Фихтенгольц Γ . М. Курс дифференциального и интегрального исчисления. Т.2/ Γ . М. Фихтенгольц «Наука», главная редакция физико-математической литературы. Москва,1969. 800с.
- 3. Войтюк Д.Г., Яцун С.С., Довжик М. Я. Сільськогосподарські машини: основи теорії та розрахунку: Навчальний посібник / Д.Г. Войтюк, С.С. Яцун, М.Я. Довжик; за ред. Д.Г. Войтюка. Суми: ВТД «Університетська книга», 2008. 543 с.