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ANNOTATION

Wang Xinfa Environmental coupled multi-factor precise regulation and
optimization for an artificial light plant factory based on a growth model. - Qualifying
scientific work on the rights of the manuscript.

The dissertation for the degree of Doctor of Philosophy in the field of
knowledge 13 - Mechanical Engineering, specialty 133 - Machines and means of
mechanization and automation of agricultural production. - Sumy National Agrarian
University, Sumy, 2023.

The dissertation is dedicated to solving an urgent scientific and technological
problem in the field of Mechanization and automation of agricultural in modern
agricultural production: innovating multi factor coupling precise regulation and
optimization technology for the environment inside artificial light plant factories, in
order to improve comprehensive resource utilization and reduce crop’s industrial
production costs. To meet the requirements of energy conservation and environmental
protection and not be affected by external climate and land limitations, the
construction of an artificial light plant factory in an enclosed and insulated chamber
should be the best option. After research, we took the lead in proposing the concepts
of modern building greenhouses and intelligent building greenhouses, and
recommended building artificial light plant factories in urban areas and constructing
larger scale intelligent building greenhouses plant factories to improve the building
performance of plant factories, thereby ensuring permanent use and long-term
production and operation. The urban intelligent plant factory is a highly intensive
modern agricultural production system that can continuously provide the most
suitable environment for plant growth and achieve high-quality and efficient
production of plant products through precise environmental regulation techniques and
mechanization, automation, digitization, intelligence, industrialization and factory
technology. Moreover, this production method can adopt a "local production, local
sales" operating model, continuously producing organic, green, clean, pollution-free,
and fresh-eating plant products throughout the year, improving people's living

standards, and ensuring the safety of the "vegetable basket" and food security. This is
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very important for modern Ukraine, for China, and even for all countries in the world.

Object of research - theories and methods for constructing plant growth
models based on deep learning algorithms; the overall composition, program
architecture and development prospects of an artificial light plant factory; and the
techniques and methods for mechanization, automation and intelligent regulation and
optimization of the production environment.

The subject of research - is the design and development of mechanized,
intelligent, industrialized, factorized, periodical and modern plant production systems
that can be built in urban areas, and the analysis and study of their system composition
and architecture; the studies of the theories and methods for building plant growth
models based on [oT, big data technologies and deep learning algorithms, which are
different from traditional mathematical algorithms; the studies of the machines,
means and methods for the coupled multi-factor precise regulation and optimization
of the environments in the artificial lighting factory based on a plant growth model.

Specifically, it includes three sub directions and subjects: firstly, investigate the
construction form, system composition, development status, development trends and
core technologies of the artificial light plant factory. The dissertation proposes
recommendations for the construction of building greenhouses, intelligent building
greenhouses, and intelligent building greenhouse plant factories. Second, research on
methods and techniques for constructing plant growth models. The dissertation
proposes a construction method and system architecture for plant growth models
based on IoT and big data technologies. Furthermore, research on the relevant theories
and core technologies of environmental regulation and optimization in artificial light
plant factories. The dissertation proposes a multi-factor self-learning coupled
precision regulation model, as well as research on the methods for constructing plant
growth models based on deep learning models and the related studies on artificial
lighting and nutrient solution regulation techniques.

The purpose of the work is to create and improve modern, intensive plant
production complexes and systems that can be constructed in urban areas,

independent of geo-climatic and land resource constraints, and to study the theory,
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law, methodology, and technology of mechanized, automated, intelligent, and precise

control and optimization of plant growth and production environments of artificial
light plant factories in buildings. The ultimate goal is to improve and optimize
regulation strategies of the environment through intelligent and precise environmental
regulation technologies, increase resource utilization efficiency, and reduce the cost
of plant industrial production products.

To achieve this goal, the following tasks need to be solved:

1. To analyze the current development status, trends, obstacles and
opportunities of the artificial light plant factory, and to clarify the importance and
direction of research.

2. To analyze and improve the existing forms of greenhouses, explore the
optimal bearing form of artificial light plant factories, propose development
recommendations for building greenhouses, intelligent building greenhouses, and
intelligent building greenhouse plant factories, and study their strategic significance
and development strategies.

3. To analyze the system composition and core technologies of artificial light
plant factories and intelligent building plant factories, and to identify research topics
and directions.

4. To investigate the construction methods for plant growth models and plant
factory big data, to propose and design a systematic framework for building plant
growth models based on IoT and big data technologies, and to develop a plant factory
big data management systems and plant growth model analysis platforms.

5. to systematically analyze the production environment factors of artificial
light plant factories and their effect on plant growth, study the coupling effect of
multiple factors on plant growth, to propose a multi factor self-learning coupling
precise regulation model, and to develop a production management systems and
environmental precise regulation platforms for artificial light plant factories.

6. To research on algorithms and implementation techniques for constructing
plant growth models based on deep learning models. To research on object detection

of tomato fruits for the artificial light plant factory using an improved YOLO deep
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learning model and instance segmentation of plant seedlings for the artificial light

plant factory using a modified Mask R-CNN and Transformer deep learning models,
and to lay the theoretical and technical foundation for constructing plant growth
models and environmental control models.

7. To experimental verify on the effects of different lighting conditions of LED
artificial light and nutrient solution formulations on plant growth and quality, to
improve to environmental regulation technology and means in artificial light plant
factories, and to lay the foundation for theoretical research, model construction, and
implementation technology of precise regulation of environmental multi factor
coupling.

In the introduction, the choice of the topic of the dissertation and scientific
tasks is substantiated, the purpose and tasks of research are formulated, the scientific
novelty and practical value of the received results are defined, and also the
information on approbation, structure and volume of work is resulted.

In the first Section, systematic literature analysis, social demand studies, and
related theoretical research have been conducted on topics such as plant factories,
intelligent building greenhouses, artificial light plant factories, plant growth model
construction, and environmental regulation and optimization of plant factories. The
necessity, importance and development prospects of the research topic of artificial
light plant factories are clarified. A comprehensive analysis of the problems, obstacles
and intelligent development needs encountered in their research and industrialization
at the current stage has been carried out. Further research has been carried out on the
core technologies for the development of artificial photoproduction plants, and a
research topic based on growth models for the precise regulation and optimization of
multi-factor couplings has been proposed. All this allowed the applicant to formulate
the purpose, objectives and tasks of the dissertation.

In the second section, the laboratory situation, experimental conditions,
experimental equipment, experimental materials, etc. of the scientific work are
presented in a comprehensive and systematic manner. It also showcases image

acquisition system platforms designed to successfully achieve scientific research
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goals and tasks, as well as the experimental design and research status of screening

illumination formulations and nutrient solution formulations.

In the third section, basic research related to the construction of plant growth
models is carried out to provide theoretical support for the construction of growth
models and the precise regulation of the environment. collecting environmental data
through the intelligent monitoring platform for plant factory environment and growth,
constructing big data for plant factory environment, analysing plant growth
parameters using different deep learning models and algorithms, and constructing big
data for plant factory growth are studied. Then data mining techniques and deep
learning models to construct a sub-model for plant growth is used, and a
comprehensive model for plant growth is summarized and constructed.

In the fourth section, the effects of light environment, nutrient solution
environment, and the comprehensive regulation of various environmental factors in
plant factories on plant growth are studied, and the effectiveness of environmental
regulation is experimentally verified.

In the fifth section, the full text is summarized, conclusions are drawn,
recommendations for future research are made, and technical recommendations for
implementing the results of the study into production are developed.

In accordance with the set goal and tasks, the following results were obtained
in the work:

1. Ukraine is a vast, sparsely populated territory with a scattered rural
population and densely populated urban areas. Moreover, most of the country has a
temperate continental climate, with an average temperature of -7.4 “C in January and
19.6 C in July. The mean annual temperature is relatively low. Planting vegetables in
the open air, on the one hand, is difficult to meet the balanced supply of fresh
vegetables throughout the year, and on the other hand, it is also difficult to meet the
diverse supply of fresh vegetable varieties. The intelligent building greenhouse plant
factory proposed by the applicant and the improved all artificial light plant factory
can improve the situation in Ukraine, and develop micro or small artificial light plant

factories in sparsely populated and dispersed rural areas to meet the perennial fresh
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vegetable needs of the rural population; The construction of large-scale intelligent
building greenhouses and plant factories in densely populated cities will enhance the
demand of urban residents for the quality of fresh vegetables. The results of this work
have been highly recognized by peer experts, government managers, and
entrepreneurs, and have received government project funding. At the same time, it
could serve as a reference for Ukraine.

2. According to a questionnaire survey from China, the main limiting factors
for the development of plant factories at present are high construction costs (73.3%)
and high operating costs (66.4%). Consumers are particularly concerned and anxious
about the unbearable price (70.6%). Consumers prioritize cleanliness and pollution-
free (39.3%), green and healthy (30.3%), high freshness (17.6%), product quality
(8.8%), and nutritional index (3.7%) when making purchases. While the situation in
Ukraine and China may not be exactly the same, the demand for vegetable quality
should be consistent. The artificial light plant factory scheme proposed by the
applicant and the precise control system architecture of environmental multi factor
coupling can solve the following three problems: (1) the production environment of
the artificial light plant factory is clean and pollution-free, and the vegetables
produced are clean, pollution-free, and green and healthy. (2) Through precise
environmental regulation and optimization, the production cost of vegetables will be
greatly reduced, making it affordable for ordinary people to consume. (3) Although
the construction cost of intelligent building greenhouse plant factories and artificial
light plant factories is high, their materials are stable and their structure is firm, and
they can be built for almost long-term use. The results of this work can address the
balanced supply of fresh vegetables and hunger threats faced by Ukraine, China, and
even the world, ensuring the "vegetable basket" and food security.

3. The dynamic and constantly changing growth environment of plants, with
diverse growth characteristics and complex growth processes, makes the construction
of plant growth models quite complex and difficult. It is almost impossible to
construct a complete and perfect mathematical model. The applicant's proposal to

build crop growth models based on IoT and big data technologies transforms the
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intractable problem of simulating complex systems with mathematical formulas into
the study of a divide and conquer relational correlation problem. Relational models
of complex systems have been constructed using data mining algorithms and deep
learning models. The applicants obtained a large amount of big data on growing
environments and plant growth during their work, and extensive preparations were
made to model the relationship between environmental factors and growth indicators.

4. Intelligent regulation and optimization of plant growth environments is the
most complex and central scientific and technological problem in artificial light plant
factories. Environmental regulation is not precise and accurate enough, and the most
immediate results can affect plant growth, yield and quality. In addition, it may result
in significant waste of production materials and integrated resources. The proposed
system architecture of a multi-factor environmental regulation platform for an
artificial light plant factory based on a growth model has been applied in the
development of a comprehensive control system for the plant factories and has also
been tried and tested by enterprises. The results of this work can improve the
utilization rate of water resources by 10%, save water soluble fertilizer by 8%, and
comprehensively reduce electricity by 18%, with huge market prospects.

5. The biomass accumulation of plants is closely related to water replenishment,
lighting, fertilizers, CO,, and even environmental temperature and humidity. Target
detection of plant fruits and instance segmentation of seedlings can be used in
intelligent monitoring systems for plant growth processes, obtaining real-time growth
status information, perceiving growth trends, predicting biomass growth, intelligently
and accurately controlling water and fertilizer replenishment, regulating
environmental variables such as light, CO, concentration, temperature and humidity,
providing the best environment for plant growth. The proposed improvements
YOLOvVS_MT algorithm is used for tomato fruit detection in artificial light plant
factories, improving the detection accuracy of dense and obstructed tomatoes. The
proposed CMRDF instance segmentation algorithm that integrates RGB-D multi-
channel image data is used for the segmentation of plant seedling leaves in artificial

light factories, with a PA of 93% and an IoU of 93.4%. These two research results



were both used in the control and management system of plant factories.

6. Three experimental studies were conducted in the laboratory of an artificial
light plant factory, including the experimental study on illumination screening and
uniformity simulation of hydroponic lettuce, the experimental study on the effect of
light quality on the quality of hydroponic Cichorium endivia L., and the screening
study on the formulation of nutrient solution for hydroponic green leaf lettuce. The
control techniques for light and nutrient solutions have been improved and the
effectiveness of environmental multi-factor control techniques has been demonstrated.
The results of the work achievements have been applied in multiple government
scientific research projects undertaken by the applicant and in the products of related
enterprises, with broad market prospects and enormous economic benefits.

7. The technology of artificial light micro plant factories, such as LED
supplementary light type planting cabinet (Chinese Patent NO. ZL 2023 2 0899208.6),
a multispectral crop phenotype analysis platform for plant factories (Chinese Patent
NO. ZL 2021 2 1596146.7), an assembled aerospace culture layer shelf with
adjustable layer height for the plant factory with artificial light (Chinese Patent NO.
ZL 2022 2 0821668.2), has been protected by Chinese utility model patents. The
technology named "A general real-time detection and counting method for eggplant
frost in plant factory (Chinese Patent NO. 202210152745.4)" is protected by Chinese
invention patents. These patented technologies have been put into production, earning
considerable economic benefits and generating enormous social value.

Scientific novelty of the obtained results:

1. For the first time, the concepts of intelligent building greenhouses and
intelligent building greenhouses plant factories were proposed, with clear definitions.
Extensive social demand research and literature analysis were conducted to
systematically and scientifically demonstrate their strategic significance. The
development strategy of "3-Positions and 1-Entity" was studied, providing an
innovative model and systematic solution for the sustainable and clean plant
production system in urban development.

2. For the first time, it is proposed to use the physiological mechanisms and
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biological theories of plant light regulation as the theoretical basis for artificial light

plant factory light environment regulation, improve the technical means of light
environment regulation, and regulate the production process of plants through the role
of light in photosynthesis, growth and development, morphological construction,
material metabolism, gene expression, and nutritional quality, in order to adapt to
market changes.

3. For the first time, a flat [oT solution using multiple sensors and controllable
work units has been provided for artificial light plant factories. A system architecture
for constructing scientific big data for plant factories has been proposed, and the
process and methods of comprehensively utilizing [oT, big data, and deep learning
technologies to construct plant growth models have been systematically studied. The
plant factory big data platform and crop growth model service system constructed
using this method can provide data and model services for plant factory industrial
enterprises through cloud services.

4. For the first time, the architecture and framework of a multi-factor
environmental regulation platform for artificial light plant factories based on growth
models were proposed, and control system software was designed, developed, and
tested. The system software can automatically obtain plant growth model files from
the cloud, and intelligently and accurately regulate the environment of plant growth
based on the plant growth model, to obtain high-quality and high-yield plant products
with minimal cost.

5. An improved YOLOv3 deep learning model and algorithm have been
proposed for target detection of hydroponic tomato fruits in artificial light plant
factories, providing theoretical foundation and technical support for yield estimation,
robotic picking, and precise regulation of growing environments. This method can
classify and detect the growing tomato fruits, obtain the quantity of green fruits, color
changing fruits, and red fruits, as a basis for precise regulation of light environment
and nutrient solution concentration, thereby effectively reducing water, electricity,
nutrient solution waste and sewage discharge, improving resource comprehensive

utilization rate and yield.
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6. For the first time, a CMRDF algorithm for plant seedling instance

segmentation was proposed, which integrates RGB-D multi-channel image data to
improve the accuracy of seedling instance segmentation. It is used to analyze plant
phenotypic data in artificial light plant factories, to construct crop growth models, and
to provide theoretical and technical support for plant intelligent growth monitoring,
disease and pest detection, production management, yield estimation, robotic
operations, and environmental regulation.

7. For the first time, experimental studies on illumination screening and
uniformity simulation of hydroponic lettuce, experimental study on the effect of light
quality on the quality of hydroponic Cichorium endivia L., and screening study on the
formulation of nutrient solution for hydroponic green leaf lettuce are conducted in an
artificial light plant factory, providing technical references for precise regulation of
environmental multi-factor coupling.

The practical significance of the results obtained lies in providing a series of
systematic theoretical achievements for the intelligent control and optimization of the
artificial light plant factory environment, and proposing comprehensive technical
suggestions. At the same time, it also provides a complete set of solutions and
suggestions for sustainable and clean plant production systems for urban development.
The use of these suggestions will improve the intelligence and intensification of plant
factories, improve the utilization rate of comprehensive resources such as land, water,
electricity, and fertilizers, reduce plant production costs, and generate considerable
economic benefits and immeasurable social value. The theoretical achievements and
technical solutions obtained in the work are protected by 4 patents and 7 computer
software copyrights, and have been implemented by the high-tech enterprise "ZSP"
Electronic Technology Co., Ltd. in Henan Province, China. After preliminary testing,
it can improve the water resource utilization rate by 10%, save water soluble fertilizer
by 8%, comprehensively reduce electricity by 18%, significantly reduce the
production cost of plant, and bring huge economic benefits and social value.

The main results of the dissertation, generalizations, scientific prescriptions and

conclusions that constitute the essence of the work were independently obtained and
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formulated by the applicant.

Keywords: plant factory, machine learning, spectrum, yielding capacity,
productivity, agricultural technologies, wavelength, data structure, factor analysis,
cherry, plant growth model, vertical agriculture, urban agriculture, precision

agriculture, smart agriculture.
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AHOTALISA

Ban Cinb¢a Exonorigyno nos'sizane 0aratoakTropHe TOYHE peryIlOBaHHS Ta
ONTHMI3AIlS A 3aBOAY IITYYHOTO OCBITJEHHS Ha OCHOBI MOJEIl pOCTY. -
KpamidikamiitHa HaykoBa Ipalisi Ha paBax pyKOIHCY.

3axuIIeHo AUcepTaliio Ha 3100yTTd HAYKOBOIO CTyMHeHs JoKTopa (imocodii
rairy3i 3HaHb 13 — MexaHiyHe MalIMHOOYyBaHHsI, crerianbHicTh 133 — Mammunu 1
3aco0M MexaHi3allli Ta aBTOMaTH3allil CUILCHKOTOCIOAAPCHKOTO BUPOOHMIITBA. —
CyMcbkuil HallioHaIbHUN arpapHuil yHiBepcutet, M. Cymu, 2023.

Jucepraliiiss MOpuUCBAYE€HAa BUPIIMICHHIO aKTyaJdbHOI HAyKOBO-TEXHIYHOI
npobjaeMyu B Trajdy3l MexaHizaimii Ta aBTOMaru3allii CiIbChbKOTOCTOJapPCHKOTO
BUPOOHUIITBA B CY4YaCHOMY arpapHoMy BHPOOHHITBI: pO3poOIl I1HHOBALIMHOT
OararoakTOpHOT TEXHOJIOTIi TOUHOTO PETYIIOBAHHS Ta ONTUMI3allli MIKpOKJIIMaTy B
TEIUIMLUAX IITY4HOTO OCBITJIEHHS 3 METOK IMOKpPAIIEHHS  KOMIUJIEKCHOTO
BUKOPHUCTaHHSI PECYpCiB Ta 3HUKEHHS COOIBAPTOCTI MPOMUCIOBOTO BHPOOHHIITBA
CLITBCBKOTOCTIONAPChKUX KYIbTYp. 1100 BiMOBIIaTH BUMOTaM €HEPro30epeKeHHS Ta
OXOPOHH HABKOJIUIITHHOTO CEPEOBHIIA 1 HE 3aJIeXKATH BiJl 30BHIITHIX KIIIMATUIHUX Ta
3eMeJIbHUX 00OMEeXeHb, HAUKpAIIMM BapiaHTOM € OyIBHUIITBO 3aBO/1Y 3 BAPOOHUIITBA
POCIHMH 31 IITYYHHM OCBITJICHHSM Yy 3aKpUTId Ta 130iboBaHii kamepi. [licms
JOCIIPKEHb MU B3sUIM Ha ceOe 1HIIaTHBY 3almpONOHYBaTH KOHIIEMINI Cy4acHHUX
OyIiBENbHUX TEIUIMIb Ta IHTEJNEKTyalbHUX OyHiBEIbHUX TEIUIMIb, a TaKOXK
peKOMeHAyBaj Il OyayBaTy 3aBOJM 31 IITYYHUM OCBITICHHSIM Yy MICHKUX pailOHaxX Ta
OymyBaTu OUIbII MacIITa0HI 3aBOAU IHTEJICKTYyaJIbHUX OYIIBEIbHUX TEIUIUIb IS
HOJIIMIIEHHST Oy/lIBEJIbHUX XapaKTePUCTUK POCIMHHUX 3aBOAIB, 3a0€3MeUyoud TUM
CaMUM TIOCTIHE BUKOPUCTAHHS Ta JOBTOCTPOKOBE BUPOOHUIITBO Ta €KCILTyaTallifo.
Micbka 1HTeneKkTyanbHa (hadpuKa poCiauH - 1€ BUCOKOIHTEHCHBHA Cy4YacHa CUCTEMA
CIJIbCBKOTOCTIOZITAPCHKOTO BUPOOHMIITBA, SKa MOXKE TIOCTIMHO 3a0e3meuyBaTH
HaWOIBII CHIPUSTIMBE CEPEIOBHUIINE JJII POCTY POCIWH 1 JOCATAaTH SIKICHOTO Ta
e(EeKTUBHOTO BUPOOHHUIITBA POCIMHHOI MPOIYKIIT 3a JOIMOMOIO0 TOYHMX METOJiB
€KOJIOTIYHOTO PETYIIOBAaHHS, a TAaKOXK MeXaHi3allli, aBromarusailii, onudpyBaHHS,

IHTEJIEeKTY, 1HIyCTpiali3alii Ta 3aBOJCHKUX TEeXHOJOrii. binbiie Toro, meil merox
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BUPOOHUIITBA MOKE MPUUHSITH OTepalliiHy MO/elb ""MicIieBe BUPOOHMIITBO, MICIICB1
npojaxi", 6e3nepepBHO BUPOOIISIIOUN OpTaHivuHY, 3€JI€HY, YUCTY, €KOJIOTIUYHO YHUCTY Ta
CBIKY POCIMHHY HPOAYKIIIO MPOTATOM YChOTO POKY, MOKPAIIyIOud PIBEHb >KUTTS
mrofieH, 3abe3nedyroun Oe3neKy "oBOUeBOIro KOIIMKa'" Ta MpoaoBoipdy Oesmeky. Lle
Iy’e BaXKJIMBO 1 JJ1s1 cyyacHoi YKpainu, 1 1t Kutaro, 1 HaBiTh JIJIs BCIX KpaiH CBITY.

O0'eKT A0CTIIKEHHS - TEOP1i Ta METOAU MOOYI0BH MOJIENIEH POCTY POCIIMH Ha
OCHOBI aJITOPUTMIB ITTMOOKOTO HaBUAHHS; 3arajIbHUI CKJIaJl, IporpaMHa apXxiTeKTypa
Ta MEPCIEeKTUBH PO3BUTKY (PaOpUKU IITYYHOTO OCBITJIEHHS POCIHH; NMPUHOMHU Ta
METOIM MeXaH13allii, aBToMaTu3aIlii Ta IHTeJEeKTyaIbHOTO PEryIIOBaHHS 1 ONTUMI3aIlii
CEpEeOBHINA POCITMHHMIITBA.

IIpenmer aocCigKeHHS - TPOCKTYBaHHS Ta PO3pOOKAa MeEXaHI30BaHUX,
IHTEJIEKTyaJIbHUX, 1HAYCTPIaI30BAHUX, 3aBOJCHKHUX, IOBUJICHHUX Ta Cy4aCHUX
CUCTEM BUPOOHMIITBA POCIIMH, SIKI MOXYTh OyTH moOy/noBaHI B MICBKHX YMOBaX, a
TaKOXK aHaJIi3 Ta JOCIHIHKEHHS iX CUCTEMHOTO CKJIaay Ta apXiTeKTYPH; JOCIHIHKEHHS
TEOpi Ta METOAIB MOOYI0BU MOjenel pocTy pociuH Ha ocHOBI loT, TexHonorii
BEIIMKUX JaHUX Ta aJrOPUTMIB IITMOOKOTO HAaBYaHHS, SKI BIIPI3HSIIOTHCS BiJ
TPaIULIMHUX MaTeMaTUYHUX AaJTOPUTMIB; JOCHIPKEHHS NPUHOMIB 1 METOMIB
KOMOIHOBaHOTO 0araro)akTOpHOTO MPEIU3IMHOTO PEeryIIOBaHHS Ta ONTHUMI3aIil
CEpEeNoBHUIIA 3aBOAY IITYYHOTO OCBITJICHHS Ha OCHOBI MOJIEJIl POCTY POCIIHUH.

3okpeMa, mpeaMeT AOCIIPKEHHsI BKJIIOYAE TPHU MIJAHAMNPSIMKH Ta TEMH: IO-
nepiie, ToCaiaAuTH OyaiBeabHy GOpMy, CACTEMHUN CKJIaJl, CTaH PO3BUTKY, TEHACHIIIT
PO3BUTKY Ta OCHOBHI TEXHOJIOTII 3aBOAY 31 HITYYHOIO OCBITJIEHHS. Y JucepTanii
3apoOINOHOBAHO pPEKOMEHJaIii 1moa0 OyaiBHUIITBA  OyIIBEJIbHUX  TEILIUIIb,
IHTEJIEKTyaIbHUX ~ Oy/iBEJIbHUX TEIUIMIb Ta IHTEJIEKTyaJdbHHX OyHiBEIbHUX
TerMYHuX KomoOiHaTiB. [lo-mpyre, AOCHIIKEHHS METOMAIB Ta MPUMOMIB MOOYI0BU
MoJieiel pOCTy pOCIuH. Y AucepTallii 3apornoHOBaHO METO/ TOOYIOBU Ta CUCTEMHY
apXITEKTypy MOJIEJIEH POCTY POCIHH Ha OCHOBI TexHojorii [oT Ta BeIuKux naHux.
Kpim Toro, qocmiizkeHHs BIANOBIAHUX TEOPii Ta OCHOBHUX TEXHOJIOTH PEeryatoBaHHS
Ta ONTHMI3aIlli HABKOJIUIITHBOTO cepefoBHIna Ha (pabpuKkax 31 MITyYHUM OCBITICHHSIM.

VY nuceprariii 3arponoHoBaHo 0aratoakTOpHY MOJIeNIb TOUHOTO PETYJIFOBaHHS, 1110
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CaMOHABYA€THCS, @ TAKOXK JTOCIIPKEHHS METO/IIB MOOYA0BH MOJENIeld pOCTy POCIHH
Ha OCHOBI1 MOJiejIei ITTMOOKOrO HaBYaHH Ta IIOB'A3aH1 3 HUMHU NOCIIKEHHSI METO/IIB
PETYIIIOBAHHS MITYYHOTO OCBITJICHHS Ta MOKUBHUX PO3YHHIB.

MeTto10 po00OTH € CTBOPEHHSA Ta BIOCKOHAJIEHHS Cy4YacHUX 1HTEHCHBHHX
POCIMHHUIBKUX KOMIUIEKCIB Ta CHCTEM, SIKI MOXYTh OyTH MOOyIOBaHI B MICHKHX
yMOBaX, HE3QJICKHO BIJ TEOKIIMATHYHMX Ta 3E€MEIbHUX OOMEXEHb, a TaKOX
TOCHIIHKEHHS Teopii, 3aKOHOMIPHOCTEH, METOAOJIOT1] Ta TEXHOJIOT1i MEXaH130BaHOTO,
aBTOMAaTHU30BaHOTO, IHTEJIEKTYaJIbHOTO Ta TOYHOT'O YIIPABIIIHHS Ta ONTUMI3aLIl POCTY
POCIUH 1 BUPOOHMYMX CEPEOBHUII POCIUHHUX (PaOpUK IITYYHOTO OCBITICHHS B
oymiBisix. KiHIEBOIO METOH0 € BJIOCKOHAJIGHHS Ta OINTHMI3allis CcTpaTerii
PETYIIIOBaHHSI HABKOJHUIITHHOTO CEPEOBHUINA 3a JIOMOMOTOK 1HTEJICKTyaJllbHUX Ta
TOYHUX TEXHOJIOTIM pEeryIrOBaHHS HAaBKOJUIITHBOTO CEPEAOBHINA, ITiIBUIICHHS
€(eKTUBHOCTI BHUKOPHUCTAaHHS pECypCiB Ta 3HUKEHHsS COOIBapTOCTI MPOAYKIIi
POCIIMHHOTO MTPOMHUCIIOBOTO BUPOOHUIITBA.

JI1st TOCSATHEHHS MOCTaBIEHOI METH HEOOX1/THO BUPIIIUTH HACTYIIHI 3aBAAHHS:

1. TlpoanamizyBaTu Cy4aCHUW CTaH PO3BHUTKY, TCHJICHIIIi, MEPENTKOIN Ta
MOXJIMBOCTI 3aBOJIy INTYYHOTO OCBITJEHHS, a TaKOX 3'ACYyBaTH BaXKIUBICTH 1
HaIMPSIMOK JOCIIIKEHb.

2. TlpoanamizyBaTu Ta BIOCKOHAJIUTH ICHYIOUl (POPMHU TEILIUIh, JOCITIIUTH
ONTUMAJIbHY Hecydy (opMy 3aBOMAIB IITYyYHOTO OCBITJICHHS, 3alpOINOHYBaTH
pEKOMEH 1Al 1Mo/10 pO3pOOKH TETUINIIb, TEIIUITH IHTEIEKTYaaIbHOTO Oy/TiBHUIITBA Ta
(habpuK TEIITMYHUX POCITUH 1IHTEJIEKTYalbHOTO OyAIBHUIITBA, BABUUTH IX CTPATErIUHE
3HAYEHHS Ta CTPATeTii PO3BUTKY.

3. IlpoanamizyBaTy CKJIaJl CHCTEMH Ta OCHOBHI T€XHOJIOT1i 3aBO/IB MITy4YHOTO
OCBITJIEHHS Ta (paOpuK IHTENEKTyaIbHUX OyHd1BEJIbHUX 3aBOJIIB, & TAKOXK BU3HAYUTH
TEMU Ta HAIPSIMKH JTOCIT1KEHb.

4. JlocniauTu METOnU MOOYIOBA MOJENEH POCTY POCIWH Ta BEIHKUX JaHUX
3aBOJIiB POCIIMH, 3aIIPOITIOHYBATH Ta PO3POOUTH CUCTEMATHYHY OCHOBY JIJIS IIOOYIOBU
MojieNiell pOCTy pociauH Ha OcHOBI TexHouorii loT Ta Benwkux gaHUX, a TaKOXK

PO3pOOUTH CUCTEMH YIIPABIIHHS BEJIMKUMU JTaHUMH 3aBOJY Ta IUIAT(HOPMH aHAIIZY
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MOJIEJIEN pOCTY POCIIHH.

5. CucreMaruyHO aHaji3yBaTh (PaAKTOpPU BUPOOHUYOTO CEpPEIOBUINA 3aBOJIIB
MITYYHOTO OCBITJICHHS Ta iX BIUIMB Ha PIiCT POCJIMH, BUBYATH BIUIMB 3B'sI3KYy 0ararbox
dakTOpiB Ha PICT POCIMH, MPONOHYBaTH OaraToPakTopHy MOJAEIb TOYHOIO
pPETYIIIOBAaHHS 3B'SI3KY, IO CAMOHABYAETHCS, a TaKOXK PO3POOJIATH CHUCTEMHU
YOpPaBJIiHHSA BUPOOHUITBOM Ta IJIATGOPMH E€KOJOTIUHO TOUYHOTO PETYIIOBaHHS IS
3aBOJIIB IITYYHOT'O OCBITJICHHS.

6. JlocniauTi aaropuTMH Ta METOAU peasizallii moOymnoBH Mojeneil pocTy
POCIMH Ha OCHOBI Mojieel MIMOOKOTo HaBYaHHS. J[ochmiauTu BUSIBICHHS 00'€KTiB
IJIOJIIB TOMATIB JIJIE 3aBOJy INTYYHOTO OCBITJICHHS POCIUH 3 BUKOPUCTAHHIM
BIOCKOHaAJIEHOT Mozen rmnOokoro HaByanHi YOLO Ta cerMmeHTari capKaHIlB
POCIWH IS 3aBOJy INTYYHOTO OCBITJICHHS 3 BUKOPUCTAHHSAM MOAU(DIKOBAHUX
Mozeineii rmmookoro HaBuyaHHd Mask R-CNN ta Transformer, a Tako)Kk 3aKjiacTH
TEOPETHYHY Ta TEXHIYHY OCHOBY JIJIsl TOOYIOBH MOJIEJICH pOCTY POCIUH Ta MOJACIICH
KOHTPOJTFO HaBKOJIMIITHHLOTO CEPEOBHIIIA.

7. EKcHepUMEHTAJIbHO TEPEBIPUTH BIUIUB PI3HUX YMOB OCBITICHHS
CBITJIIOAI0JHOTO IITYYHOTO CBITJIA Ta PELENTYp NOKUBHUX PO3YUHIB Ha PICT Ta SKICTh
POCIIHMH, YIOCKOHAJIIUTA TEXHOJOTII0 Ta 3acCO0M EKOJOTIYHOTO PEryjioBaHHS Ha
3aBOJlaX INTYYHOTO OCBITJICHHS, a TaKOX 3aKJIAaCTH OCHOBY ISl TEOPETUYHHX
TOCHIKeHb, TOOYJOBM MOJEJNeH Ta TEXHOJIOTIT BIPOBAKEHHS TOYHOIO
PETYIIIOBAHHS €KOJIOTTYHOTO 6araTo(hakTOPHOTO 3B'A3KY.

Y Berymi OOrpyHTOBYETHCSI BHOIp TE€MHU JucepTallii Ta HAyKOB1 3aBIaHHS,
(dhopMyTIOIOTECS MeTa 1 3aj7adl JOCHIIKEHHS, BU3HAYAIOThCS HAayKOBa HOBH3HA 1
MpakTUYHA MIHHICTh OTPUMAHUX PE3YyJbTaTiB, @ TAKOK HABOASTHCS BIOMOCTI MPO
anpo0ailito, CTpyKTypy Ta 00csr poOOTH.

Y nepmomy po3miii cucTeMaTWYHUN aHai3 JITEparypH, TOCIIIKCHHS
COI[IaJIbHOTO TTOTUTY Ta MOB'A3aH1 3 HUMH TEOPETHYHI JOCITIIKEHHS OyJId MPOBEICHI
Ha Takl TeMH, SIK 3aBOJAU POCIMH, TEIUIUIl 1HTEJIEKTYaJlbHOTO OYy[AiBHMIITBA, 3aBOJIU
HITYYHOTO OCBITJIEHHS, Oy/lIBHULITBO MOJIEJNIEH POCTY POCIIMH, a TAKOXK E€KOJIOT1uHE

peryjIloBaHHsI Ta ONTHUMI3allis 3aBOJiIB. 3'ICOBAaHO HEOOXIAHICTh, BaXKJIUBICTh Ta
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NEPCIEeKTUBU PO3BUTKY TEMH JOCHIIHKEHHS POCIUHHUX (PadbpuK 31 MITyYHUM
ocBiTiieHHsM. [IpoBeneHO KOMIUIEKCHUHM aHami3 mpoOsieM, IMepemkon Ta MmoTped
1HTEJIEKTYyaJIbHOTO PO3BUTKY, 110 BUHUKAIOTh MPH 1X JOCIIKEHHI Ta 1HAyCTpiai3amii
Ha cydacHoMmy eTtari. [IpoBeaeHo mopaibIn JOCHIKEHHS OCHOBHUX TEXHOJIOTIN
pPO3pOOKM YCTaHOBOK INTYYHOTO (OTONPOAYKYBaHHS Ta 3allPONIOHOBAHO TEMY
JOCIIPKEHHSI Ha OCHOB1 MOJIEIe pOCTy AJIi TOUHOTO PETYIIOBaHHS Ta ONTHMI3allil
OararodakTopHux 3B'A3KiB. Bee 11e 103B0oni0 3100yBady chopMyoBaTH METY, 111
Ta 3aBJaHHs AUCEPTaLiiHOI pOOOTH.

Y napyromy po3aijii BceOIUHO 1 CHUCTEMaTU4HO IpeAcTaBiieH1 JlabopaTopHa
CUTYyaIlis, YMOBH EKCIIEPUMEHTY, EKCIIEPUMEHTAJIbHE o0JaTHaHHS,
EKCIIEpUMEHTaJIbHI MaTepiajii TOIIO HAyKoBOi poOoTH. BiH Takox AeMOHCTpye
maropMu  CUCTEMU OTPUMaHHS 300pakeHb, TMPU3HAYEH1 JUISl YCHIIIHOTO
JOCSITHEHHS I1JIeH 1 3aBAaHb HAYKOBUX JIOCIHIJIKEHb, a TAKOXK E€KCIIEPUMEHTAIbHUN
JIM3aiH 1 CTaH JOCIIHKEHb CKPUHIHTOBUX (POPM OCBITIICHHSI 1 PEIENTYP MOKUBHUX
PO3YHHIB.

Y Tpernomy po3aini mpoBoasThes GyHAaMEHTaIBHI TOCTIKEHHS, TIOB'SI3aH]
3 OOYIOBOIO MOJIENIe POCTY POCIHH JJisi TEOPETUYHOTO 3abe3nedeHHs] moOynoBu
MOJIeJIe POCTY 1 TOUHOTO PETyJIOBaHHS HABKOJIMIIHBOTO cepenoBHIla. BuBuaeTncs
30ip €KOJOTIYHUX JaHUX 32 JOTMOMOTOI0 1HTEJIEKTYaIbHOI MIaTPOPMU MOHITOPUHTY
HaBKOJIMIITHBOTO CEPEOBUIIA Ta 3pOCTaHHS POCIMHHUX 3aBOJIIB, 1MOOYym0Ba big data
JUIA 3aBOJICBKOTO CEpENOBHUINA POCIWH, aHaji3 MapaMeTpiB pPOCTYy POCIMH 3a
JIOTIOMOTOI0 PI3HUX MOJEJIEM Ta aJIropuTMiB DIMOOKOTO HaBUYaHHS Ta MOOyI0Ba
BEJIMKUX JaHUX s pocTy (padpuku pociuH. [IOTIM BHKOPUCTOBYIOTHCS METOIU
IHTEJIEKTyaJIbHOTO aHaJi3y JaHMX Ta MOJENl IMMOOKOro HaBUaHHS JUIsl MOOYIOBH
MIIMOJIENI POCTY POCIWH, a TaKOX Yy3arajibHIOETbCA Ta OYyIyeThCS KOMIUJIEKCHA
MOJIEJIb POCTY POCIIHH.

Y derBeproMy Ppo3aidi JOCHIIKEHO BIUIMB CBITIIOBOTO CEPEIOBUIIIA,
CEpeIOBHUILA MOXXUBHOTO PO3UMHY Ta KOMIUIEKCHOTO PETYIIOBaHHS PI3HUX (PAaKTOPIB
HABKOJIMIIIHBOTO CEPEIOBUINA HAa POCIMHHUX (Pabprkax Ha PICT POCIHH, a TAKOXK

€KCIIEPUMEHTAJILHO MEPEBIPEHO €(DEKTUBHICTh €KOJIOTTYHOIO PETYIIOBAHHSL.



17

Y n'aromy po3aini y3aranbHIOETbCS MOBHUN TEKCT, POOJSATHCS BUCHOBKH,
JAIOTHhCSl PEKOMEHJIAIlIT 100 TMOAAIBIINX JOCTIIKEHb, PO3POONISIIOTECS TEXHIYHI
peKOMeH/Iallii II0I0 BIIPOBAKEHHSI PE3Y/IbTaTIB JOCIIKEHHS Y BUPOOHUIITBO.

BianoBigHO 10 MOCTaBiI€HOT METH 1 3aBIaHHAMU B poOOTI OyJld OTpUMaHi
HACTYIIHI PE3YJIbTaTH:

1. Ykpaina - 1ie Benuka, MajoHaceJIeHa TEPUTOPIs 3 pO3MOPOIICHUM CLIbCHKUM
HACEJICHHSM 1 TYCTOHACeJIeHUMH MICbKUMHU paiioHamu. KpiMm Toro, Ouibllla YacTHHA
KpaiHi Ma€ MOMipHO-KOHTHHEHTAIBHUHN KITIMAT 13 CEPEeIHbOI0 TeMIieparyporo -7,4 °C
y ciuni ta 19,6 °C y nunHi. CepeaHbopiyHa TeMIlepaTypa BIJHOCHO HHU3bKA.
Bucamxkytoun oBodl Ha BIAKPUTOMY TOBITPI, 3 OAHOTO OOKY, BaXXKKO 3aJI0BOJIbHUTH
30ajaHCOBaHE MOCTA4aHHs CBIKUX OBOYIB MPOTSITOM POKY, a 3 1HIIOTO OOKY, TaKOXK
BAXXKO 3aJIOBOJIbHUTH PI3HOMAHITHY TMPOMO3UIII0 CBIKUX COpPTIB  OBOYIB.
3anponoHoBaHa 3asBHUKOM IHTEJEKTyajbHa Oy[IiBIs TEIUIMYHOTO KOMOIHATy Ta
BIOCKOHAJICHUH KOMOIHAT 31 IITYYHUM OCBITJIEHHSIM MOXYTb MOKPAIIUTHA CUTYAIiI0
B YKpaiHi, a TAaKOX PO3BUHYTH MIKpO- 200 MaJii KOMOIHATH 31 IITYYHUM OCBITIICHHIM
y MaJIOHACENEHUX Ta PO30CEPEKCHUX CUIBCBKUX paloHax sl 3aJ0BOJICHHS
OaratopiyHuUX MOTPEO CUIBCHKOIO HACENEHHS y CBDKUMX OBOYaX; OyHiBHUITBO
BEJIMKOMACIITAa0OHMX 1HTEIEKTyaldbHUX OyIiBEIbHUX TEIUIMIb Ta KOMOIHATIB y
I'YCTOHACEJICHUX MICTax IMiJABUIIUTHh MOMUT MICHKAX MEIIKAHIIIB Ha SKICHI CBIXKI
oBoui. Pesynbraty 1i€i poOboTH Oyaud BHUCOKO OIIHEHI KoJieraMHU-€KCIepTaMHu,
JIEp’)KaBHUMH YIIPABITIHIIMUA Ta MIANPUEMIIIMUA 1 OTPUMAIH JEp’KaBHE MPOCKTHE
¢inancyBaHHA. BogHovyac, BOHU MOXKYTh CIIYTyBaTH NPUKIIAIOM JUIsl YKpaiHu.

2. 3rilHO 3 AHKETHUM ONWUTYBaHHSAM, MpoBeaeHUM y Kwurtai, oCHOBHUMU
0OMEXyIoUrMH (haKTOpaMH JIJIsl PO3BUTKY (paOpUK 3 BUPOOHHIITBA POCIUH HA JTaHUM
yac € BUCOKa BapTicTh OyaiBHULITBA (73,3%) Ta BUCOKI onepauiiiti Burpatu (66,4%).
CnoxuBaul 0COOMMBO 3aHEMOKOEHI Ta cTypOoBaHi HeminiomMHom0 I1iHOIO (70,6%).
[Ipu 3mificHEHHI MOKYIOK CIIOKUBAa4l HAIAIOTh MPIOPUTET YHCTOTI Ta BIJACYTHOCTI
3abpynHenns (39,3%), exonoriuHocti Ta 310poB't0 (30,3%), BHCOKIA CBIKOCTI
(17,6%), saxocti mpoaykiii (8,8%) Ta moxuBHIN 1IHHOCTI (3,7%). Xoua cuTyalis B

VYkpaini Ta Kutai moxe OyTH He 30BCiM OTHAKOBOIO, IMOIMUT Ha SIKICTh OBOYiB TOBUHEH
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OyTH OIHAKOBUM. 3alPONIOHOBaHA 3assBHUKOM CX€Ma 3aBOJ1Y 31 IITYYHOTO OCBITIICHHS
Ta TOYHA apXiTeKTypa CHUCTEMHU VIpaBiIiHHS Oararo)akTOpHUM 3B'SI3KOM 3
HABKOJIMIIHIM CEPEJOBHUIEM MOXXYTh BHUPIIIMTH HAacTynHi Tpu mnpodiemu: (1)
BUPOOHWYE CEpPEIOBUILE 3aBOAY 31 IITYyYHOTO OCBITJIEHHS € YUCTUM Ta 0e3
3a0pynHEHHsS, a BHUPOOJIEHI OBOYl - YHCTUMH, O3 3a0pyqHEHHS, 3€JICHUMHU Ta
300poBUMH. (2) 3aBASKM TOYHOMY EKOJIOTTYHOMY pETYIIOBAaHHIO Ta ONTHMI3allil
coO1BapTICTh BUPOOHUIITBA OBOYIB Oyle 3HAYHO 3HIKEHA, IO 3pOOUTH iX
JOCTYITHUMH JJI CTIOKUBAHHS 3BUYaiHUMH JTFOIbMH. (3) Xo4a BapTiCTh Oy/liBHUIITBA
IHTEJICKTyaJbHUX Oy/IIBEIbHUX TEIUIMYHUX 3aBOJIB Ta 3aBOMIB 31 IITyYHUM
OCBITJICHHSIM BHCOKa, iX Marepiaji cTaOllbHI, a CTPYKTypa MIIHA, 1 BOHH MOXYTb
OyTu moOynOBaHI JJIsi Maibke JOBrOCTPOKOBOTO BUKOpUCTaHHs. PesynbraT 1mi€i
POOOTH MOXKYTh BUPIIUTH IIPOOIeMy 30aJIaHCOBAHOTO MOCTavYaHHsI CBIXKMX OBOYIB Ta
3arpo3u rojofy, 3 KO CTHKaroThcs YKpaiHa, Kurtaii 1 HaBiTh CBIT, 3a0e3neuyroun
"0BOYEBHII KOIIMK" Ta MPOIOBOJIBIY O€3MEKY.

3. JluHamiyHe cepeloBHIIE POCTY POCIMH, IO TMOCTIMHO 3MIHIOETHCA, 3
PI3HOMaHITHUMH XapaKTEPUCTHKAMHU POCTY Ta CKIATHUMHU POCTOBUMH IMPOIECAMU,
poOUTH OOYOBY MOJICJIEH POCTY POCIHUH JOCUTh CKJIAIHUM 1 BaXKKUM 3aBIaHHSIM.
[IpakTHYHO HEMOXJIMBO MOOYIyBaTH MOBHY Ta JOCKOHATY MaTeMaTU4YHY MOJECIb.
[Ipomo3wuiisi 3mo0yBada 11070 MOOYIOBM MOJAENEH POCTy POCIWH HAa OCHOBI
texnosorii  IoT Ta BenMKUX MAaHUX TpaHCPOPMY€E HEPO3B'SI3HY MPOOIEMY
MOJICTIIOBAaHHS CKJIQJIHUX CHCTEM 3a JOMOMOIOI0 MaTeMarudyHux QopMya y
TOCHIDKEHHST PEJSIIIIAHOT  KOPENAIINHOT 3a1a4yl 3a MTPUHIUIOM "pO3IUIAH 1
Bojiojaproi". PensuiiiHi  Momenl CKJIAQJHUX CcHUCTeM Oynu  moOydoBaHi 3
BUKOPUCTAHHSM aJTOPUTMIB IHTEJIEKTYaIbHOTO aHaNi3y JaHuX Ta Mojelen
mmookoro HauaHHs. [lim wac poGotu 3100yBadi OTpUMANIA BEJMKY KUIBKICTh
BEIIMKHX JaHUX MPO CEPEOBUIIEC BUPOILYBAHHS Ta PICT POCIHH, a TAKOXK MPOBEIU
BEIIMKY MIATOTOBKY JI0O MOJCJIIOBAaHHA  B3a€EMO3B'A3Ky MK  (akTopamu
HABKOJIMIITHHOTO CEPEAOBHUIIA Ta MOKA3HUKAMH POCTY.

4. [aTeneKTyaabHe PEryatOBaHHS Ta ONTHUMI3AIlIS CEPEIOBUII] POCTY POCIIHH €

HaMCKJIAHINIOW Ta IEHTPAIbHOI0 HAYKOBO-TEXHIYHOK MpoliemMoro Ha ¢dadpukax
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IITYYHOTO OCBITJEHHS. PeryitoBaHHS HABKOJMIIHBOTO CEPENOBUINA HEIOCTATHHO
TOYHE 1 TOYHE, 1 Horo Oe3mocepenHi pe3ylbTaTd MOXYTh BIUIMBAaTH Ha PICT,
BpPOXaMHICTH 1 AKICTh pociauH. Kpim Toro, 11e Moxke mpHU3BECTH 10 3HAYHUX BTpaT
BUPOOHHUYMX MaTepiajiB Ta IHTETPOBAHUX pPECypcCiB. 3alponoHOBaHA CHCTEMHA
apxiTekTypa 0araroakTopHOi IIaT(HOPMHU EKOJIOTTYHOTO PETYIIOBAHHS JIsl 3aBOJLY 3
BUPOOHUIITBA POCIMH IITYYHOTO OCBITJIEHHS Ha OCHOBI Mojell pocry Oyna
3aCTOCOBaHA MPH PO3poOIl KOMILJIEKCHOI CHUCTEMM YIIPaBIiHHS I 3aBOAIB 3
BUPOOHUIITBA POCIINH, a TAKOXK Oysia BUIIPOOyBaHa 1 MPOTECTOBaHA HA MIANPUEMCTBAX.
Pesynbratl 1i€i poOOTH MOXYTh MOKPAITUTH KOE(DIIIEHT BUKOPUCTAHHS BOJHMX
pecypciB Ha 10%, 3aomanutu BOJOPO3UYMHHI J0OpuBa Ha 8% Ta KOMILJIEKCHO
3MEHUIUTH CIOKMBAHHS enekTpoeHeprii Ha 18%, mo Mae BeaMuYe3HI PUHKOBI
MIEPCTICKTHBH.

5. HakonuyenHss 6ioMacu pOCIMH TICHO TIOB'Si3aHE 3 TOTIOBHEHHSM BOIIH,
ocBiTIeHHsM, gobpuBamu, CO, 1 HaBITh TEMIIEPaTypord Ta BOJIOTICTIO
HABKOJIUIIHBOTO cepenoBuila. [{i1boBe BUSABIECHHS IUIONIB POCIWH 1 CErMEHTallls
EK3eMIUISIPIB PO3Caad MOXYTh OyTH BHKOPHCTAaHI B 1HTEJNEKTyaJIbHUX CHCTEMax
MOHITOPHUHTY TIPOIIECIB POCTY POCIIHH, OTpUMaHHS 1H(OpMAIlii PO CTaH POCTY B
peanbHOMY Yaci, CIPUMHATTS TeHIEHIIN pOCTY, IPOTHO3yBaHHS 3pOCTaHHs OiomMacH,
IHTEJIEKTyaJlbHE 1 TOYHE YMPaBIiHHS TMOMOBHEHHSM 3amaciB Boau 1 J0OpHB,
pPErylioBaHHs 3MIHHUX HABKOJIMIIHBOTO  CEPENIOBUINA, TaKUX fAK CBITJO,
koHueHTpaiis CO,, Temneparypa i BOJIOTiCTh, 3a0e3Meuyoun HallKpalle CepeOBHILE
JUISL POCTY POCIHH. 3amnpoIlOHOBaH1 BJIOCKOHaJieHHs anroputMmy YOLOvS MT
BUKOPUCTOBYIOTBCSI JIJI1 BUSIBJICHHSI IUIOAIB TOMaTiB Ha ¢aldpukax 31 MITyYHUM
OCBITJICHHSIM, TMOKpPAIyIOYd TOYHICTh BUSIBJCHHS LIUIBHUX 1 3aBaJICHUX TOMATIB.
3anporoHoBaHMM anropuTM cermenTarlii ekzemmuisipieB CMRDF, saxuii iHTerpye naHi
OararokanajabHUX 300paxkeHb RGB-D, BUKOPUCTOBY€THCS /Il CErMEHTAIlli JINCTKIB
po3caay POCIHH y TEIUIHISX 31 IITYYHUM OCBITICHHSM, 3 TToKasHuKaMu PA 93% Ta
IoU 93,4%. 11i nBa pe3ynbraTu 10CTIAKEeHHs OyJId BUKOPUCTAHI B CUCTEMI KOHTPOJIIO
Ta yNpaBIiHHSI POCIUHHUMU (haOpUKaMHU.

6. Tpu excriepuMeHTaIbHI JOCTIKEHHS OyJIu MPOBEJIeHI B 1abopaTopii 3aBo1y
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31 IITYYHUM OCBITJICHHSIM, BKJIFOYAIOUU €KCIIEPUMEHTAIIbHE TOCTIIPKEHHSI CKPUHIHTY
OCBITJICHHSA Ta MOJIETIOBAHHS OJTHOP1THOCTI T'1POTIOHHOTO cajary,
eKCIIEpUMEHTaJbHEe JOCIIIKEHHSI BIUIMBY SIKOCTI CBITJIa Ha SIKICTb T1JPOMNOHHOIO
Cichorium endivia L. Ta CKpUHIHTOBE AOCIIKEHHS (hOPMYITIOBAHHS MOKUBHOTO
pPO3UMHY JIs TIAPOTIOHHOTO cayaTy 3 3€JCHUM JIHCTAM. YIOCKOHAJEHO METOIU
KOHTPOJIIO CBITJa Ta MOXUBHUX PO3YHMHIB Ta IPOAEMOHCTPOBAHO €(PEKTUBHICTH
METO/IB €KOJOTIYHOTro OararoakTopHOro KOHTpodto. Pesyiabrat poOGoTu Oynu
3aCTOCOBAaHI B JIEKUIBKOX JAEpPXKABHUX HAYKOBO-IOCIITHUX MPOEKTaX, BUKOHAHUX
3aBHUKOM, a TAaKOX Y MPOAYKIlI CHOPIAHEHUX MANPUEMCTB, IO Ma€ IIUPOKI
PUHKOBI IEPCIIEKTUBY Ta BETUYE3HI €EKOHOMIYHI BUTOJIH.

7. TexHosoris MIKpO pOCIMHHUX (aOpUK 31 IITYYHUM OCBITICHHSM, TAKUX K
ceiToniogHa mada s goaatkoBoro ocBitieHHs (Ilarent Kurtaro Ne ZL 2023 2
0899208.6), MynbTHCIIeKTpaibHa IuIaTdhopMma sl aHami3y (DEHOTUILy KYIBTYp IS
pociuaHNX Padbpuk (ITarent Kuraro Ne ZL 2021 2 1596146.7), 310pana moauIs mapy
aepOKOCMIYHOT KyJIBTYPH 3 PEryIbOBAHOIO BUCOTOIO APy IJIsl POCIUHHOT (haOpuKu
31 mtyuynuM ocBiTieHHsM ([Tarent Kurtaro Ne Z1 2022 2 0821668.2), Oyna 3axuiieHa
KUTalCbKUMHU MATEHTaMU Ha KOPUCHI Mojeii. TexHooris mij Ha3Bow "3arajbHUil
METOJ] BUSBJICHHS Ta MiJPpaXyHKY 3aMOpO3KIB Oakja)kaHIB y peajbHOMY Yaci Ha
terdl  (kutadicbkuii mareHT Ne 202210152745.4)" 3axuineHa KHTaHCBKUMU
naTeHTamMu Ha BuHaxoau. LI 3amaTeHTOBaHI TeXHOJIOrIi Oyiau BIOPOBAKEHI Yy
BUPOOHHUIITBO, TMPUHOCAYN 3HAYHI €KOHOMIYHI BHTOIM 1 CTBOPIOIOYHM BEIHMYE3HY
colllalbHy LIHHICTb.

HaykoBa HOBU3HA OTPMMAHMX Pe3yJbTaTiB:

1. Bnepmie Oynu 3ampOnoOHOBaHI MOHATTS I1HTENEKTyaJlbHUX OyJlIBEIbHUX
TETUTULIb 1 IHTEJIEKTYaJIbHUX Oy/I1BEJIbHUX TEILIUIb 3aBO/1B, 3 YITKUMU BU3HAUYCHHIMU.
[IpoBeneHo mMacmTaOHI AOCTIAKEHHS CYCHIJIBHOTO MOMUTY Ta aHali3 JITeparypH,
o0 CHUCTEMaTUYHO Ta HAYKOBO IMPOJIEMOHCTPYBATH iX CTPATETiyHy 3HAYUMICTH.
JlocaiKeHO CTpaTerito po3BUTKY «3 mo3ullii Ta 1 cy0'ekT rocnoiaproBaHHS, 1110
3a0e3mneuye 1HHOBAIIHHY MONIETh Ta CHUCTEMHE PIIMICHHS /Ui CTIMKOI Ta 4YHUCTOl

CUCTEMHU BUPOOHMIITBA POCIUH Y MICBKOMY PO3BHUTKY.
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2. Bnepmie 3anmpornoHOBaHO BHUKOPUCTOBYBATH (Pi310JI0TIUHI MEXaHI3MHU Ta
O10JI0T14YH1 Teopii pPerymsiii pOCIMHHOTO CBITIA K TEOPETUYHY OCHOBY PETYJIAILIl
IITYYHOTO OCBITJCHHS 3aBOJCHKOTO CBITIOBOTO CEPENOBUINA, YAOCKOHAIIOBATH
TEXHIYHI 3acO0M PEeTryJAllii CBITJIOBOTO CEpPEIOBHUINA, PETYIIOBATH BUPOOHUYUN
MIPOIIEC POCIIUH Yepe3 POIIb CBITIA y (POTOCHHTE31, POCTI Ta pO3BUTKY, MOpdosoriyHa
KOHCTPYKIIisl, MaTepiaibHui MeTaboi3M, eKCHpecis TeHIB Ta SKICTh XapdyBaHHS,
1100 a/1anTyBaTUCS JI0 3MiH PUHKY.

3. Brmepue npocte pimenHs [oT 3 BUKOpuCTaHHSM [EKUJIBKOX JaTYMKIB 1
KepOBaHUX poOouux OJOKIB Oy/lO HajaHO JJIs 3aBOAIB 31 IITYYHOTI'O OCBITJIICHHS.
3anporoHOBaHO CHUCTEMHY apXiTeKTypy MoOynoBu HaykoBuUX big data myist 3aBomiB
POCIIMH, CUCTEMaTUYHO BUBYAETHCS MPOIIEC 1 METOAN KOMIUIEKCHOTO BUKOPHUCTaHHS
[oT, big data 1 TexHosyoriii mMOOKOTO HaBYaHHS ISl MOOYAOBH MOJENEH pPOCTy
pocnun. [lnardpopma big data 3aBoacbkoi gaOpuku Ta cuctemMa OOCIyroBYBaHHS
MOJIeIe POCTY CLIBCHKOTOCIOAAPCHKUX KYJBTYp, MOOYyIOBaHAa 3 BUKOPUCTAHHIM
IOTO METOMy, MOXXYTh HaJlaBaTH TMOCIYTH JaHUX Ta MOJCNEH ISl 3aBOJCHKUX
MIPOMHUCIIOBUX MIAMPUEMCTB 32 JIOTTOMOTOI0 XMapHUX CEPBICIB.

4. Briepuie Oyna 3anpoIllOHOBaHa apXiTeKTypa 1 CTpyKTypa OararodakTopHOi
m1aTGOpMU E€KOJIOTTYHOTO PETYIIOBAaHHS JUIsl 3aBOAIB IITYYHOIO OCBITJICHHS Ha
OCHOBI MOJIETIEH 3pOCTaHHA, & TAKOXX CIPOEKTOBAHO, PO3POOJICHO 1 BHUMPOOYBAHO
mporpaMHe  3a0e3le4YeHHS CHUCTeMH  ympaBimiHHg. CHCTeMHEe  TporpaMHe
3a0e3MeYeHHs MOXE aBTOMATUYHO OTPUMYBAaTd (ailin Moneneil pocTy pOCIHH 3
XMapH, a TAKOXK PO3YMHO 1 TOUHO PETYIIIOBATH CEPEAOBHIIE POCTY POCIUH HA OCHOBI
MOJIEJl pOCTY POCIIMH, OTPUMYBATH SKICHY 1 BUCOKOBPOXKAIHY POCIMHHY NPOIYKIIIIO
3 MiHIMaJIbHUMU BUTpaATaMHU.

5. 3anponoHOBaHO BIOCKOHAJIIEHY MOJENb Ta aJlrOPUTM ITTMOOKOTO HaBUYAHHS
YOLOvV3 nana miyiecnpsMOBaHOTO BHSIBICHHS ITUIOAIB TIAPONMOHHUX TOMATIB Ha
3aBOjlaX IITYYHOTO OCBITJICHHS, IO 3a0e3Meuye TEOPETUYHY OCHOBY Ta TEXHIUHY
MIATPUMKY JUIsl OLIHKKA BpPOXKAMHOCTI, pOOOTHM30BaHOrO 300py Ta TOYHOIO
pEryiIoBaHHs cepefoBHIna BUpoIryBanHs. Lleit metox mo3Bossie kinacudikyBaTu Ta

BUSBJIATH 3pOCTal0Y1 IJIOJIM TOMATIB, OTPUMYBATH KIJIbKICTh 3€JIEHUX IUIOJIIB, TUIOAIB,
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10 3MIHIOIOTH KOJIp, Ta YEPBOHUX IUIOIB, SIK OCHOBY JJII TOYHOTO PETYIIOBAHHS
CBITJIOBOTO CEPEOBHINA Ta KOHIIEHTPAILIlT PO3UMHY MOKUBHUX PEYOBUH, TUM CaMUM
e(eKTUBHO 3MEHIIYIOYH BOJY, €IEKTPOCHEPTii0, BIAXOAM MOXHUBHUX PO3UYMHIB Ta
CKUJIAHHS CTIYHMX BOJI, MOKpAIIYyIOYH KOMIUJIEKCHY IIBUAKICTb BUKOPHUCTAHHS
pPECYpCIB Ta BPOXKANHICTB.

6. Bnepme 3anpononoBano anroputM CMRDF cermenTanii ex3eMIuisipis
MIPOPOCTKIB POCIIHH, IKUU IHTErpye JaHi bararokaHaibHOro 300paxkeHHss RGB-D nis
M1BUIICHHS TOYHOCTI CETMEHTAIII] €K3eMIUISPIB MPOPOCTKIB. BiH BUKOPUCTOBY€ETHCS
JUISL aHali3y (PEHOTUIIYHUX JAHWX POCJIMH Ha 3aBOjaxX IITYYHOTO OCBITJCHHS, JJIs
MoOyI0BH MOJIEJICH POCTY CiIbCHKOTOCTIONAPCHKUX KYIJIBTYP, @ TAKOXK IS HaJaHHS
TEOPETUYHOI T TEXHIYHOI MATPUMKH 1HTEIEKTYaIbHOIO MOHITOPUHTY POCTY POCIIUH,
BUSIBJIICHHS XBOPOO Ta IIKIAHUKIB, YIPABIiHHSA BUPOOHUIITBOM, OI[IHKH BPOXKAHHOCTI,
pOOOTH30BaHUX OMEPAlliil Ta EKOJIOTTYHOTO PEryIIOBaHHS.

7. Briepiiie ekcriepuMeHTabHI JOCIIKEHHS 3 OCBITIIFOBAILHOTO CKPUHIHTY Ta
MOJICJTFOBaHHS OJTHOPITHOCTI T1APONIOHHOTO calaTy, eKCIIEpUMEHTAIIbHI JOCTIKCHHS
BIUTMBY SIKOCTI CBITJIa Ha SIKICTh TiaponoHiku Cichorium endivia L. Ta CKpUHIHTOBI
JOCIIDKEHHS 3 PEIENTYypPH TOXHUBHOTO PO3YHHY JUISI TiJPOMOHHOTO 3EJICHOTO
JUCTOBOTO CajaTy MPOBOASTHCS HA 3aBOJI IITYYHOTO OCBITICHHS, IO 3a0e3neuye
TEXHIYHI MOCHJIAHHS JJIS TOYHOTO PETYIIOBAHHS €KOJOTIYHOTO OararoakToOpHOTO
3B'SA3KY.

IIpakTuyHe 3HAYEHHS] OTPUMAHUX Pe3YJbTATIB y MOJATAE B HAJIAHHI PSIY
CUCTEMHHUX TCOPETUYHUX JOCATHEHb JUIS IHTEJICKTYaJdbHOTO VIIPaBIiHHA Ta
ONTUMI3allli 3aBOJICHKOTO CEPENOBUIIA 3aBOY INITYYHOTO OCBITJEHHS 1 MPOIMO3UIIiT
KOMIUIEKCHUX TEXHIYHHUX MPOIO3HUIII. Y TOH K€ yac BiH TaAKOXX HA/IA€ MOBHUN HAOIp
plIllIEHb Ta MPOIO3UINH MOAO0 CTIMKUX Ta YUCTUX CUCTEM BUPOOHUIITBA POCIUH IS
MICBKOTO PO3BUTKY. BHKOpUCTaHHS IUX MPOMO3UINNA TOKPAIIUTh IHTEIEKT Ta
iHTeHcH(DiKaIito poOOTH  3aBOJIB, TOKPAIMUTh KOEQIIIEHT BUKOPUCTAHHS
KOMILIEKCHUX PECYPCIB, TAKHUX SIK 3€MJIsI, BOJIA, €JIEKTPOCHEPTis Ta 100pUBa, 3SHU3UTh
BUTPATH HA BHUPOOHHIITBO POCIMH Ta CTBOPUTH 3HAYHI EKOHOMIYHI BUTOIU Ta

HE3MIpPHY COULIalibHy WIHHICTb. OTpuMaHi B poOOOTI TEOPETHYHI JOCSITHEHHS 1
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TEXHIYHI PIIlICHHS 3aXHUIleH] 4 TaTeHTaMu 1 7 aBTOPChKUMU ITpaBaMU Ha KOMIT'TOTEpH1

MporpaMM, peasizoBaHi BHCOKOTEXHOJOTIYHUM MmianpueMcTBoM «ZSPy» Electronic
Technology Co., Ltd. B mpogiutii Xenann, Kutaii. [1icis nonepeqH»0ro Te€CTyBaHHS
BIH MOXE NIJBUIIUTH KOe(QIlIEHT BUKOPUCTAHHA BOAHUX pecypciB Ha 10%,
3201 IUTH BOAOPO3UMHHI 100puBa Ha 8%, BCEOIUHO CKOPOTHUTH EIEKTPOSHEPTII0 Ha
18%, 3HaYHO 3HU3UTHU COOIBApTICTH MPOMYKII 3aBOAY, MPUHECTH BEIMUYE3HI
€KOHOMIYH1 BUTOJI Ta COIlIAJIbHY LIHHICTb.

OcHOBHI pe3y/bTaTH AUcepTallii, y3aralbHeHHS, HAyKOBI PUITUCH 1 BUCHOBKH,
[0 CTaHOBJSATH CYTh POOOTH, OyIM CaMOCTIMHO OTpHUMaHi 1 cQOpMYJIbOBaHI
3100yBavYEM.

KirouoBi cJyioBa: 3aBojchka (abpuka, MallMHHE HaBYaHHSA, CIIEKTP,
BpPOXKaWHICTh TOTY>KHICTb, MPOAYKTUBHICTh, CUIbCHKOTOCIOAAPCHKI TEXHOJOTTII,
JOBXHHA XBHIJI1, CTPYKTypa TaHuX, PaKTOPHUI aHali3, BUIIHS, MOJIEIb POCTY POCIHUH,
BEPTUKAJIbHE CUTHCHKE TOCTIOIAPCTBO, MICHKE CLTHCHKE TOCIIOIAPCTBO, TOYHE CLITHCHKE

rocrmnogapCTBo, poO3yMHEC CLIBCBKE rocrmoaapcCTBoO.
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LIST OF PUBLICATIONS OF THE APPLICANT ON THE TOPIC OF THE

DISSERTATION
SCOPUS / Web of Science publications

1. Wang Xinfa, Onychko Viktor, Zubko Vladislav, Zhenwei Wu & Mingfu
Zhao. (2023). Sustainable production systems of urban agriculture in the future: A
case study on the investigation and development countermeasures of the Plant Factory
and Vertical Farm in China. Frontiers in Sustainable Food Systems, 2023,7. DOI:
10.3389/fsufs.2023.973341 (Web of Science Core Collection, Q1, IF: 5.005)

The applicant conducted a social survey on the research and industrialization
status of plant factories among Chinese users, analyzed the cognitive levels and
attitudes of different groups, and proposed development strategies.

2. Xinfa Wang, Zhenwei Wu, Meng Jia, Tao Xu, Canlin Pan, Xuebin Qi,
Mingfu Zhao. (2023) Lightweight SM-YOLOVS5 tomato fruit detection algorithm for
Plant Factory. Sensors, 23(6),3336. DOI: 10.3390/s23063336 (Web of Science

Core Collection, Q2, IF: 3.847)

The applicant proposed a lightweight object detection algorithm based on
YOLOVS5's SM-YOLOVS5 for tomato picking robots in plant factories.

3. Wang Xinfa, Zubko Vladislav, Onychko Viktor, Zhenwei Wu & Mingfu
Zhao. (2022). Online recognition and yield estimation of tomato in plant factory based
on YOLOV3. Scientific Reports, 12:8686. DOI: 10.1038/s41598-022-12732-1 (Web
of Science Core Collection, Q2, IF: 4.997)

The applicant has proposed an improved YOLOvV3 tomato target detection
algorithm for online recognition, detection, and yield estimation of tomato in plant
factories.

4. Zhenwei Wu, Minghao Liu, Chengxiu Sun, Xinfa Wang (corresponding
author). (2023). A dataset of tomato fruits images for object detection in the complex
lighting environment of plant factories, Data 1in Brief, 5(48). DOI:
10.1016/;.dib.2023.109291 (Scopus and EI)

The applicant has disclosed the tomato fruit dataset in the complex environment

of the artificial light plant factory for research on fruit classification, object detection,
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and instance segmentation.

5. Liu Qihang, Wang Xinfa (Co-first author), Zhao Mingfu, Liu Tao. (2023).
Synergistic influence of the capture effect of western flower thrips (Frankliniella
occidentalis) induced by proportional yellow-green light in the greenhouse.
International Journal of Agricultural and Biological Engineering (IJABE), 16(1):88-
94. DOI: 10.25165/j.1jabe.20231601.7562 (Co-first author, same as Liu's
contribution, Web of Science Core Collection, Q2, IF:1.885)

The applicant participated in research, result analysis, and paper writing, and
conducted experiments to verify the phototaxis and capture effect of a certain
proportion of yellow and green light on greenhouse western flower thrips.

6. Wang Xinfa, Vladislav Zubko, Onychko Viktor, Zhenwei Wu and Mingfu
Zhao. (2022). Research on intelligent building greenhouse plant factory and “3-
Positions and 1-Entity” development mode. Iop Conference Series: Earth and
Environmental Science, 1087(1),012062. DOI: 10.1088/1755-1315/1087/1/012062
(Scopus and EI)

The applicant first proposed and systematically explained the concept of an
intelligent building greenhouse plant factory, and also discussed its advantages and
strategic importance.

7. Tao Xu, Weishuo Zhao, Lei Cai, Xiaoli Shi and Xinfa Wang. (2023).
Lightweight saliency detection method for real-time localization of livestock meat
bones. Scientific Reports, 2023,13(1). DOI: 10.1038/s41598-023-31551-6 (Web of
Science Core Collection, Q2, IF: 4.996)

The applicant participated in research, analysis of the results and writing the
article. This study can directly support the applicant's research topic.

8. Lin Lu, Weirong Luo, Wenjin Yu, Junguo Zhou, Xinfa Wang & Yongdong
Sun. (2022). Identification and Characterization of Csa-miR395s Reveal Their
Involvements in Fruit Expansion and Abiotic Stresses in Cucumber. Frontiers in Plant
Science, section Plant Bioinformatics, 13:907364. DOI: 10.3389/fpls. 2022.907364
(Web of Science Core Collection, Q1, IF: 6.627)

The applicant participated in research, analysis of the results and writing the
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article. This study can directly support the applicant's research topic.

9. Hongxia Zhu, Linfeng Hu, Tetiana Rozhkova, Xinfa Wang, Chengwei Li.
(2023). Spectrophotometric analysis of bioactive metabolites and fermentation
optimization of Streptomyces sp. HU2014 with antifungal potential against
Rhizoctonia solan. Biotechnology & Biotechnological Equipment, 2023,37(1):231-
242. DOI: 10.1080/13102818.2023.2178822 (Web of Science Core Collection, Q3,
IF: 1.762)

The applicant participated in research, analysis of the results and writing the
article. This study can directly support the applicant's research topic.

10. Jifei Zhao, Rolla Almodfer, Xiaoying Wu, Xinfa Wang. (2023). A dataset
of pomegranate growth stages for machine learning-based monitoring and analysis,
Data in Brief, 7(50). DOI: 10.1016/;j.dib.2023.109468 (Scopus and EI)

The applicant participated in research, analysis of the results and writing the
article. This study can directly support the applicant's research topic.

11. Cao Zhishan, Cao Jinjun, Vlasenko Volodymyr, Wang Xinfa, & Weihai Li.
(2022). Transcriptome analysis of Grapholitha molesta (Busk) (Lepidoptera:
Tortricidae) larvae in response to entomopathogenic fungi Beauveria bassiana.
Journal of Asia-Pacific Entomology, 101926. DOI: 10.1016/j.aspen.2022.101926
(Web of Science Core Collection, Q3, 1F:1.580)

The applicant participated in research, analysis of the results and writing the
article. This study can indirectly support the applicant's research topic.

12. Tengfei Yan, Yevheniia Kremenetska, Biyang Zhang, Songlin He, Xinfa
Wang, Zelong Yu, Qiang Hu, Xiangpeng Liang, Manyi Fu, Zhen Wang. (2022). The
Relationship between Soil Particle Size Fractions, Associated Carbon Distribution
and Physicochemical Properties of Historical Land-Use Types in Newly Formed
Reservoir Buffer Strips. Sustainability, 14(14):8448. DOI: 10.3390/sul4148448
(Web of Science Core Collection, Q2, 1F:3.889)

The applicant participated in research, analysis of the results and writing the
article. This study can indirectly support the applicant's research topic.

Articles in scientific professional publications of Ukraine


https://doi.org/10.1016/j.aspen.2022.101926
https://doi.org/%2010.3390/su14148448
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13. Wang Xinfa, Zubko Vladislav, Onychko Viktor, Zhao Mingfu. (2022).

[llumination screening and uniformity simulation of hydroponic lettuce in artificial
light plant factory. Bulletin of Sumy National Agrarian University. The series
“Mechanization and Automation of Production Processes™, 2022, Vol. 49 No. 3, p3-
10. DOI: 10.32845/msnau.2022.3.1

The applicant simulated the uniformity of LED lighting, experimentally
verified its effect on the growth of hydroponic lettuce, and screened a suitable lighting
formula for hydroponic lettuce in plant factories, providing theoretical support for
light environment regulation.

14. Wang Xinfa, Onychko Viktor, Zubko Vladislav, Zhao Mingfu. (2022).
Screening study on the formulation of nutrient solution for hydroponic green leaf
lettuce in plant factory with artificial light. Bulletin of Sumy National Agrarian
University. The series “Agronomy and Biology”, 2022, Vol. 48 No. 2, p11-16. DOI:
10.32845/agrobi0.2022.2.2

The applicant conducted experiments to verify the effects of different nutrient
solution formulations on the growth of hydroponic green leafy lettuce, and selected
nutrient solution formulations suitable for hydroponic green leafy lettuce in artificial
light plant factories, providing a theoretical basis for nutrient solution regulation.

15. Li Fang, Wang Xinfa, Dubovyk Volodymyr, Liu Runqgiang. (2021). Rapid
electrochemical detection of carbendazim in vegetables based on carboxyl
functionalized multi-walled carbon nanotubes. Bulletin of Sumy National Agrarian
University. The series “Agronomy and Biology”, Vol. 46 No. 4, p76-82. DOI:
10.32845/agrobio.2021.4.11

The applicant participated in research, analysis of the results and writing the
article. This study can indirectly support the applicant's research topic.

16. Han Yafeng, Wang Xinfa, Onychko Viktor, Zubko Vladislav, Li Guohou.
(2020). Recognition and location of crop seedlings based on image processing. Vol.
42 No. 4: Bulletin of Sumy National Agrarian University. The series “Agronomy and
Biology™. 2020, vol. 42 No.4, P33-39. DOI: 10.32845/agrobi0.2020.4.5

The applicant participated in research, analysis of the results and writing the
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article. This study can indirectly support the applicant's research topic.

Articles in scientific journals of other countries

17. Wang Xinfa, Zubko Vladisla, Onychko Viktor, Mingfu Zhao & Zhenwei
Wu. (2022). Experimental study on the effect of light quality on the quality of
hydroponic Cichorium endivia L. in Plant Factory with Artificial Light. African
Journal of Agricultural Research, Vol.18(6), pp. 455-463. DOI: 10.5897/
AJAR2022.16028

The applicant studied the effect of light quality on the growth of hydroponic
Cichorium endivia L. and screened suitable light quality compositions to provide
theoretical support for light regulation in artificial light plant factories.

18. WANG Xinfa, Vladislav ZUBKO, Viktor ONYCHKO, Mingfu ZHAO.
(2022). Development status and trend of plant factory Intelligence in China. Scientific
Bulletin. Series F. Biotechnologies (University of Agricultural Sciences and
Veterinary Medicine Bucharest Romania), Vol. XX VI, Issue. 1, ISSN 2285-1364, 65-
70. http://biotechnologyjournal.usamv.ro/pdf/2022/issue 1/Art8.pdf

The applicant reviewed the current status and trends of intelligent development
in Chinese plant factories, further demonstrated the necessity of the research topic,
and determined the research direction.

19. Shi Fang, Ma Yukun, Wang Xinfa, Zhao Mingfu. (2023). Research on
potato pest identification based on RegNet network (In Chinese). Chinese

Agricultural  Mechanization, 44(09):8888. DOI: 10.13733/j.jcam.issn.2095-
5553.2022.09.026 (Chinese core journals)

The applicant participated in research, analysis of the results and writing the
article. This study can directly support the applicant's research topic.

20. ZHAO Zhenxiang, AO Wenhong, WANG Xinfa, LU Lin, LUO Weirong,
SUN Yongdong. (2023). Genome-wide identification and transcriptional analysis of
DME gene family in cucumber (In Chinese). Plant Physiology Journal, 59 (1): 209—
218. DOI: 10.13592/j.cnki.ppj.100264. (Chinese core journals)

The applicant participated in research, analysis of the results and writing the

article. This study can directly support the applicant's research topic.
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21. Zhang Wei, Wang Xinfa, Shang Junjuan, Wang Ling. (2022). Design and

Implementation of Multifunctional Seed and Fertilizer Sowing UAV (In Chinese).
Development & Innovation of Machinery & Electrical Products, 35(02), 47-49. DOI:

10.3969/}.i1ssn.1002-6673.2022.02.014

The applicant participated in research, analysis of the results and writing the
article. This study can directly support the applicant's research topic.

22. Sun Tingting, Zhao Songyu, Wang Xinfa, Qin Mingyi, Zhang Chao & Tian
Xueliang. (2021). Screening for biocontrol bacteria against Alternaria porri from
phyllosphere of welsh onion (In Chinese). Journal of Henan University of science and
Technology (natural science edition) (Chinese), 2021,49(01):35-40. DOI:
10.3969/}.1ssn.2096-9473.2021.01.007

The applicant participated in research, analysis of the results and writing the
article. This study can indirectly support the applicant's research topic.

Theses of the reports and Conference papers

23. Wu Zhenwei, Liu Minghao, Sun Chengxiu, Wang Xinfa (Corresponding
author). (2023). Real time detection and counting method of tomato fruit in an
artificial light plant factory based on yolov5. The second International Workshop on
Vertical Farming (VertiFarm2023), Chengdu, China, May 22-24, 2023, organized by
the Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences under
the aegis of ISHS (International Society for Horticultural Science).
https://vertifarm2023.scimeeting.cn/en/web/index/.

The applicant leads a graduate research team to an offline conference and
presents a poster of the research results at the conference. The applicant led the study
and was the principal contributor.

24. Wang Xinfa, Vladislav Zubko, Onychko Viktor, Zhenwei Wu and Mingfu
Zhao. (2022). Research on intelligent building greenhouse plant factory and “3-
Positions and 1-Entity” development mode. The Fifth International Workshop on
Environment and Geoscience (IWEG2022), Qingdao, China, July 16-18, 2022.
http://www.iwegconf.org/LAP.aspx.

The applicant participated in the online conference and presented a poster of
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the results of the research online. The applicant is the principal contributor and won
the "OUTSTANDING POSTER PRESENTATION" award.

25. WANG X.F, ONYCHKO VI.,, ZUBKO V., ZHAO M.F. (2022).
Development status and trend of plant factory with artificial lighting technology and
industrialization.  International ~ Scientific  and  Practical =~ Conference
"HONCHAROV’S READINGS", Sumy, Ukraine, May 25, 2022,92-95.

The applicant participated in the online conference and presented a poster of
the results of the research online and is the principal contributor.

26. WANG Xinfa, Vladislav ZUBKO, Viktor ONYCHKO, Mingfu ZHAO.
(2021). Development status and trend of plant factory intelligence in China. One
Health Student International Conference, Nov. 24th-27th, 2021, Bucuresti,
ROMANIA, P. 32. received a certificate. https://onehealth.usamv.ro/index/program/

The applicant participated in the online conference and verbally reported the
results of the study at the conference and was the principal contributor.

27. Zhu Hongxia, Wang Xinfa, Rozhkova Tetiana. (2021). Preliminary study
on antifungal activity of astreptomyces SP. strain hu2014 against phytopathogenic
fungi. 11T International Scientific and Practical Conference “TOPICAL ISSUES OF
MODERN SCIENCE, SOCIETY AND EDUCATION”, KHARKIV, Ukraine, 3-5
October 2021, received a certificate.

The applicant participated in research and online conferences. This study can
directly support the applicant's research topic.

28. L1 F.,, WANG X.F.,, LIU D.M., DUBOVYK VOLODYMYR. (2022). A
review of purified materials in quenchers pretreatment method for pesticide residue
detection. International Scientific and Practical Conference "HONCHAROV’S
READINGS", Sumy, Ukraine, May 25, 2022,157-158.

The applicant participated in research and online conferences. This study can
directly support the applicant's research topic.

29. ZHU HONGXIA, ROZHKOVA T., WANG XINFA. (2022). Study the
allelopathy of the fermentation extracts from streptomyces SP. HU2014 on cucumber.

International Scientific and Practical Conference "HONCHAROV’S READINGS",
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Sumy, Ukraine, May 25, 2022,165-166.

The applicant participated in research and online conferences. This study can
directly support the applicant's research topic.

30.LIU  D.M., IEVGEN KONOPLIANCHENKO, VIACHESLAV
TARELNYK, WANG X.F., LI F. (2022). Application research of agricultural
mechanization based on genetic algorithm. International Scientific and Practical
Conference "HONCHAROV’S READINGS", Sumy, Ukraine, May 25, 2022,231-
233.

The applicant participated in research and online conferences. This study can
indirectly support the applicant's research topic.

Patents

31. Zhao Mingfu, Wu Zhenwei, Wang Xinfa et al. (2023). LED supplementary
light type planting cabinet, utility model patent, China, ZL.-2023-2-0899208.6, July
04, 2023, the third inventor, has been authorized. https://s1.qizhidao.com/DZgawS

The applicant, as the main implementer, participated in the research, result
analysis, and application of the patent.

32. Wang Xinfa, Qu Peixin, Wu Xiaoying et al. (2021). A multispectral crop
phenotype analysis platform for plant factories, utility model patent, China, ZL-2021-
2-1595146.7, November 19, 2021, the first inventor, has been authorized.
https://s1.qizhidao.com/HMsvpq

The applicant, as the first contributor, completed the research, result analysis,
and application of the patent.

33. Wang Xinfa, Qu Peixin, Wu Xiaoying et al. (2022). An assembled
aeroponics culture layer frame with adjustable layer height for the plant factory with
artificial light, utility model patent, China, Z1.-2022-2-0821668.2, July 8, 2022, the
first inventor, has been authorized. https://s1.qizhidao.com/Jchaxy

The applicant, as the first contributor, completed the research, result analysis,
and application of the patent.

34. Wang Xinfa, Liu Qihang, Qu Peixin et al. (2022). A general real-time

detection and counting method for eggplant fruit in plant factory, invention patent,
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Application approval No.202210152745.4, February 19, 2022, the first inventor,

Application accepted, Substantive review stage. https://s1.qizhidao.com/OHxtta

The applicant, as the first contributor, completed the research, result analysis,
and application of the patent.

Computer software copyright

35. Wang Xinfa, Sun Chengxiu. (2023). Detection system for germination
rates in plant factories - V1.0, Computer software copyright, China, 2023SR0557513,
May 22, 2023, the first copyright owner, has been authorized.

The applicant, as the first contributor, completed the design and implementation
of the computer software.

36. Wang Xinfa, Liu Minghao. (2023). Automatic monitoring system for
cabbage diseases and pests - V1.0, Computer software copyright, China,
2023SR0557498, May 22, 2023, the first copyright owner, has been authorized.

The applicant, as the first contributor, completed the design and implementation
of the computer software.

37. Wang Xinfa, Wu zhenwei. (2023). Water circulation control system of
plant factory - V1.0, Computer software copyright, China, 2023SR0478585, April 18,
2023, the first copyright owner, has been authorized.

The applicant, as the first contributor, completed the design and implementation
of the computer software.

38. Wang Xinfa, Wu zhenwei. (2023). Plant factory image acquisition system
- V1.0, Computer software copyright, China, 2023SR0478584, April 18, 2023, the
first copyright owner, has been authorized.

The applicant, as the first contributor, completed the design and implementation
of the computer software.

39. Wang Xinfa, Wu zhenwei, Zhao Mingfu et al. (2022). Plant factory 3D
image acquisition system - V1.0, Computer software copyright, China,
2022SR0665171, March 15, 2022, the first copyright owner, has been authorized.

The applicant, as the first contributor, completed the design and implementation

of the computer software.
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40. Wang Xinfa, Guo Dawei, Wu Xiaoying et al., (2022). National grain yield

monitoring system (Abbreviated as the grain yield monitoring system) - V1.0,
Computer software copyright, China, 2022SR0971135, March 16, 2022, the first
copyright owner, has been authorized.

The applicant, as the first contributor, completed the design and implementation
of the computer software.

41. Wang Xinfa, Zhao Jifei, Rolla Jamil Almodfer et al., (2022). Intelligent
diagnosis system of pests and diseases in intelligent orchard based on knowledge map
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INTRODUCTION

Justification for choosing the research topic. The plant factory is an
advanced stage in the development of modern agriculture, which is a high-investment,
high-tech, and high-quality equipment production system. It is a factory farming
system that allows agricultural production to be separated from natural ecological
constraints and produces plant products on a scheduled annual basis without
interruption, representing the future direction of agriculture. It is seen as an essential
approach to addressing food security, population, resource and environmental issues
in the 21st century, and as crucial to achieving future food self-sufficiency in
metropolitan development, space engineering and planetary exploration.

Food is not only a crucial strategic substance for the economic stability and
national prosperity of nations around the world, but it is also the lifeblood of the nation
and a fundamental necessity for human survival. Food security is linked to social
harmony, political stability and sustainable economic development, and is critical to
national security. The use of science and technology to promote agriculture and
develop modern agriculture is essential to ensure food production.

Global urbanization is accelerating, and by 2050 the world's population will
exceed 9.1 billion, 34 percent more than now. More than 70 percent of the world's
population will live in cities, 21 percent more than now. It is estimated that to
sustainably feed this expanding population, at least a 70% increase in food production
will be necessary to meet the increased demand for food and vegetables. Prior to the
COVID-19 pandemic, 8.9 percent of the global population suffered food shortages,
according to the most recent figures from the United Nations Food and Agriculture
Organization. This suggests that the global food security crisis has not been resolved
and is getting worse. Increasing food production, achieving dietary balance and
eradicating hunger remain global challenges.

From the perspective of human development, on the one hand, with the
development of society, the world faces numerous global problems, such as rapid
population growth, accelerated urbanization, frequent climate extremes, severe

environmental degradation, the spread of global coronaviruses, endless local wars,
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intensifying desertification, an increasing shortage of arable land resources, an
inadequate food supply, and the loss of agricultural labor, etc. The conflict is getting
worse and poses a grave threat to the survival and progress of mankind. On the other
hand, with the advance of world civilization, economic development, and the
accumulation of social wealth, the total annual income of the people is steadily rising,
and prices will no longer be the first factor in their consumption of fruits and
vegetables. It is possible that everyone will have access to high-quality agricultural
goods, and the desire of the global population to achieve harmonious prosperity and
high quality of life is growing. Improving the working environment for agriculture,
increasing land utilization and improving the efficiency of food crop production are
particularly important as humanity uses increasingly scarce arable land to feed an
expanding population.

Agriculture is the primary sector that underpins the construction and
development of the national economy and the survival and development of humanity.
The uneven distribution of natural resources for agriculture, such as arable land, water,
light and climate, has led to uneven distribution of traditional agricultural production
and food supply, which has severely affected food security, regional security and
quality of regional survival. In the future, it will be particularly important to study the
development of new production-based agricultural systems that are efficient,
intensive, resource efficient, self-sufficient and modern to meet the balance between
inter-regional food supply, urbanization and the need for a growing population to eat
well. Modern agriculture and smart agriculture are the most effective forms of
technical engineering to address the scarcity of agricultural natural resources that are
impeding sustainable development in the region, and are the primary means to
transform the agricultural industry into one that is highly efficient and intensive.
Modernization is the first step in developing agriculture. Digitalization and
intelligence are crucial directions for agricultural modernization. As an advanced
level of modern agriculture, plant factories are a crucial development direction for
modern and intelligent agriculture. It not only enriches the regular intake of residents,

ensures the balance of people’s diets, and raises the standard of living, but it is also
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on the verge of forming a fashionable and high-end new agricultural industry, which

will become a crucial method for farmers to become wealthy and stimulate industrial
revitalization. In 2021, our school’s plant factory innovation research team conducted
a China-wide survey on the development of plant factories and vertical farms, and the
results showed that 93.55% of consumers believe that plant factories are a promising
new form of urban agricultural production that can be vigorously developed in urban
areas and is the most modern, high-tech, environmentally friendly, and resource-
efficient. The primary reason customers are willing to purchase plant-based products
is that they are clean and pollution-free (39.34%) and green and healthy (30.26%),
followed by their high freshness (17.61%), high quality (8.80%), and high nutritional
index (3.71%).

In recent years, 3D growing systems, plant factories and vertical farms have
been developing rapidly worldwide and have emerged as the most promising urban
agriculture and life-enhancing agricultural production systems in the world. An urban
smart plant factory is a large indoor plant production system constructed in an urban
area, using artificial light and hydroponics as primary production methods in a
modern smart building greenhouse with a fully accurate and regulated environment.

Currently, urban smart plant factories are still in the stage of technological
research and scientific demonstration, but are fast approaching the development
process of commercialization, marketization and industrialization. Its system
components, system architecture, environmental control, production technology,
management standards, product standards and marketing must be researched,
developed and optimized. There is significant room for growth in its intelligence,
precision and modernisation.

In short, the artificial light plant factory is the fundamental form of urban
intelligent plant factory and the best system for urban agricultural development.
Moreover, environmental regulation is the core and key technology of artificial light
plant factories. As a result, the technology for environmental multi-factor coupling
precise regulation and optimization of the artificial light plant factory based on a

growth model has become a research hotspot in the industrial engineering field of
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modern agriculture. On the basis of a questionnaire survey, field research, and

literature review, this study has conducted a comprehensive summary and analysis of
the current state of research on the development of urban intelligent plant factories,
determined the research field and scope, clarified the research objectives, research
directions, technical routes, experimental programs, and research contents, broken
through a number of scientific and technical problems, attained diverse research
results, and met the intended research expectations.

Relationship with academic programs, plans, topics. The dissertation title

and research work are based on research area “Energy-saving technologies in the
agricultural sector. Precision farming systems, Climate chamber with adaptive
lighting for growing crops” of the scientific work program of the department of

agricultural engineering, faculty of engineering technology, Sumy National Agrarian
University, within the framework of scientific topics such as the research programs
within the state budget of the Ministry of Education and Science of Ukraine

“Scientific support of technologies for growing technical crops (corn for grain)”

(State Budget Technical Work No. 0121U110453, executor Zubko V.M., 2021-
2022) and “Scientific support of technologies for growing technical crops
(sunflower for grain)” (State Budget Technical Work No. 0121U110454, executor
Zubko V.M., 2021-2022), and Grant within the project “Interuniversity cooperation

as a tool for enhancement of quality of selected universities in Ukraine" entitled

"Climate chamber with lighting adapted for growing crops” (executor Zubko V.M.
and Shelest M.S., 2019-2021); Key Research and Development and Promotion
Special Project Plan of Henan Province “Research, development and application of
key technologies for plant factories in intelligent building greenhouses” (No.
212102110234, executor Wang X.F., 2021-2022), “Environment multi-factor
coupling regulation and optimization of urban intelligent plant factory” (No.
222102320080, executor Wang X.F., 2022-2023) and “Research on intelligent

control technology of plant factories based on IoT and big data” (No. 232102111124,
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executor Zhao M.F. and Wang X.F., 2023-2024); and Key Research Project Plan of

colleges and universities in Henan Province “Development of aeroponics system in
full artificial lighting plant factories” (No. 22A210013, executor Wang X.F.,

2022-2023). The research topic “Environmental multi-factor coupling precise
regulation and optimization for an artificial light plant factory based on a growth
model” was determined by the applicant in consultation with his supervisors, Prof.

Zubko V.M. and Associate Prof. Onychko V.I. The research objectives, contents, and
tasks are set by the applicant after comprehensive analysis and reporting to their
supervisors through literature research, questionnaire surveys, and field surveys in
several regions of China, combined with the existing laboratory experimental
conditions, PhD training programs, and the requirements for scientific, technological,
economic, and social development. The research aims to provide a new concept, new
means, new methods, and innovative models for modern urban agriculture, as well as
a scientific foundation and technical support for the development of sustainable urban
production-based agricultural plant production systems.

The purpose and objectives of the study. to create and improve modern,
intensive plant production complexes and systems that can be constructed in urban
areas, independent of geo-climatic and land resource constraints, and to study the
theory, law, methodology, and technology of mechanized, automated, intelligent, and
precise control and optimization of plant growth and production environments of
artificial light plant factories in buildings. The ultimate goal is to improve and
optimize intelligent control strategies, increase resource utilization efficiency, and
reduce the cost of industrial production plant products through precise environmental
regulation technologies.

To achieve this goal, it is necessary to solve the following tasks:

1. To analyze the current development status, trends, obstacles and
opportunities of the artificial light plant factory, and to clarify the importance and
direction of research.

2. To analyze and improve the existing forms of greenhouses, explore the
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optimal bearing form of artificial light plant factories, propose development

recommendations for building greenhouses, intelligent building greenhouses, and
intelligent building greenhouse plant factories, and study their strategic significance
and development strategies.

3. To analyze the system composition and core technologies of artificial light
plant factories and intelligent building plant factories, and to identify research topics
and directions.

4. To investigate the construction methods for plant growth models and plant
factory big data, to propose and design a systematic framework for building plant
growth models based on IoT and big data technologies, and to develop a plant factory
big data management systems and plant growth model analysis platforms.

5. to systematically analyze the production environment factors of artificial
light plant factories and their effect on plant growth, study the coupling effect of
multiple factors on plant growth, to propose a multi factor self-learning coupling
precise regulation model, and to develop a production management systems and
environmental precise regulation platforms for artificial light plant factories.

6. To research on algorithms and implementation techniques for constructing
plant growth models based on deep learning models. To research on object detection
of tomato fruits for the artificial light plant factory using an improved YOLO deep
learning model and instance segmentation of plant seedlings for the artificial light
plant factory using a modified Mask R-CNN and Transformer deep learning models,
and to lay the theoretical and technical foundation for constructing plant growth
models and environmental control models.

7. To experimental verify on the effects of different lighting conditions of LED
artificial light and nutrient solution formulations on plant growth and quality, to
improve to environmental regulation technology and means in artificial light plant
factories, and to lay the foundation for theoretical research, model construction, and
implementation technology of precise regulation of environmental multi factor
coupling.

Object of research - theories and methods for constructing plant growth
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models based on deep learning algorithms; the overall composition, program

architecture and development prospects of an artificial light plant factory; and the
techniques and methods for mechanization, automation and intelligent regulation and
optimization of the production environment.

The subjects of research - is the design and development of mechanized,
intelligent, industrialized, factorized, periodical and modern plant production systems
that can be built in urban areas, and the analysis and study of their system composition
and architecture; the studies of theories and methods for building plant growth models
based on IoT, big data technologies and deep learning algorithms, which are different
from traditional mathematical algorithms; the studies of machines, means and
methods for the precise regulation and optimization of environments using coupled
multi-factors in the artificial lighting factory based on a plant growth model.

Specifically, it includes three sub directions and subjects: firstly, investigate the
construction form, system composition, development status, development trends and
core technologies of the artificial light plant factory. The dissertation proposes
recommendations for the construction of building greenhouses, intelligent building
greenhouses, and intelligent building greenhouse plant factories. Second, research on
methods and techniques for constructing plant growth models. The dissertation
proposes a construction method and system architecture for plant growth models
based on IoT and big data technologies. Furthermore, research on the relevant theories
and core technologies of environmental regulation and optimization in artificial light
plant factories. The dissertation proposes a multi-factor self-learning coupled
precision regulation model, as well as research on the methods for constructing plant
growth models based on deep learning models and the related studies on artificial
lighting and nutrient solution regulation techniques.

Research methods. In the scientific work, bibliometric methods, case study
methods, questionnaire survey methods, comparative research methods, and
statistical research methods were applied in a comprehensive manner to conduct a
review of plant factories and smart building greenhouse plant factories related to the

research topic. The necessity and importance of plant research has been identified,
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and the prospects for the development of techniques for the environmental regulation
of artificial light plants have been clarified. A comprehensive application of data
collection methods (such as manual surveys, traditional measurements, image
analysis, machine vision, and data annotation methods), data analysis methods (such
as traditional statistical methods, bioinformatics methods, machine learning methods,
and deep learning methods), mathematical modelling, and other methods has been
conducted to study the target detection and yield estimation of tomato fruits, as well
as the segmentation of plant seedling leaf instances, This provides a theoretical basis
for the construction of big data for plant factories and plant growth models. We
comprehensively utilized computer simulation research methods, statistical research
methods, experimental research methods, and hypothesis research methods to design
multiple experiments for experimental research, verifying the effectiveness of plant
factory light environment regulation technology and nutrient solution regulation
technology, as well as the multi factor coupling regulation technology for plant
factory environment.

The scientific novelty of the results obtained is that:

1. For the first time, the concepts of intelligent building greenhouses and
intelligent building greenhouses plant factories were proposed, with clear definitions.
Extensive social demand research and literature analysis were conducted to
systematically and scientifically demonstrate their strategic significance. The
development strategy of "3-Positions and 1-Entity" was studied, providing an
innovative model and systematic solution for the sustainable and clean plant
production system in urban development.

2. For the first time, it is proposed to use the physiological mechanisms and
biological theories of plant light regulation as the theoretical basis for artificial light
plant factory light environment regulation, improve the technical means of light
environment regulation, and regulate the production process of plants through the role
of light in photosynthesis, growth and development, morphological construction,
material metabolism, gene expression, and nutritional quality, in order to adapt to

market changes.
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3. For the first time, a flat [oT solution using multiple sensors and controllable
work units has been provided for artificial light plant factories. A system architecture
for constructing scientific big data for plant factories has been proposed, and the
process and methods of comprehensively utilizing [oT, big data, and deep learning
technologies to construct plant growth models have been systematically studied. The
plant factory big data platform and crop growth model service system constructed
using this method can provide data and model services for plant factory industrial
enterprises through cloud services.

4. For the first time, the architecture and framework of a multi-factor
environmental regulation platform for artificial light plant factories based on growth
models were proposed, and control system software was designed, developed, and
tested. The system software can automatically obtain plant growth model files from
the cloud, and intelligently and accurately regulate the environment of plant growth
based on the plant growth model, to obtain high-quality and high-yield plant products
with minimal cost.

5. An improved YOLOv3 deep learning model and algorithm have been
proposed for target detection of hydroponic tomato fruits in artificial light plant
factories, providing theoretical foundation and technical support for yield estimation,
robotic picking, and precise regulation of growing environments. This method can
classify and detect the growing tomato fruits, obtain the quantity of green fruits, color
changing fruits, and red fruits, as a basis for precise regulation of light environment
and nutrient solution concentration, thereby effectively reducing water, electricity,
nutrient solution waste and sewage discharge, improving resource comprehensive
utilization rate and yield.

6. For the first time, a CMRDF algorithm for plant seedling instance
segmentation was proposed, which integrates RGB-D multi-channel image data to
improve the accuracy of seedling instance segmentation. It is used to analyze plant
phenotypic data in artificial light plant factories, to construct crop growth models, and
to provide theoretical and technical support for plant intelligent growth monitoring,

disease and pest detection, production management, yield estimation, robotic



48

operations, and environmental regulation.

7. For the first time, experimental studies on illumination screening and
uniformity simulation of hydroponic lettuce, experimental study on the effect of light
quality on the quality of hydroponic Cichorium endivia L., and screening study on the
formulation of nutrient solution for hydroponic green leaf lettuce are conducted in an
artificial light plant factory, providing technical references for precise regulation of
environmental multi-factor coupling.

Practical significance of the obtained results. The practical significance of
the experimental results lies in providing a series of systematic theoretical
achievements for the intelligent control and optimization of the artificial light plant
factory environment, and proposing comprehensive technical suggestions. At the
same time, it also provides a complete set of solutions and suggestions for sustainable
and clean plant production systems for urban development. The use of these
suggestions will improve the intelligence and intensification of plant factories,
improve the utilization rate of comprehensive resources such as land, water, electricity,
and fertilizers, reduce plant production costs, and generate considerable economic
benefits and immeasurable social value. The theoretical achievements and technical
solutions obtained in the work are protected by 4 patents and 7 computer software
copyrights, and have been implemented by the high-tech enterprise "ZSP" Electronic
Technology Co., Ltd. in Henan Province, China. After preliminary testing, it can
improve the water resource utilization rate by 10%, save water soluble fertilizer by
8%, comprehensively reduce electricity by 18%, significantly reduce the production
cost of leafy vegetables, and bring huge economic benefits and social value.

Personal contribution of the applicant. The applicant together with the
scientific supervisor set the purpose of the work and the tasks of the research, analysed
and synthesised the results obtained. The statements and conclusions presented in the
dissertation were obtained by the author independently. Among them: substantiation
and development of research methods, planning of the experiments that were
conducted, development of experimental programmes, as well as their

implementation. The author's personal contribution is specified in the list of



49
publications. The author's contribution to the works performed in co-authorship was

the development of research methods and their implementation.

Approbation of the results of the dissertation. The main provisions and
results of theoretical and experimental studies of the dissertation work were published
and positively evaluated at international scientific and technical conferences. III
International Scientific and Practical Conference “TOPICAL ISSUES OF MODERN
SCIENCE, SOCIETY AND EDUCATION” (KHARKIYV, Ukraine, 3-5 October 2021);
one Health Student International Conference (Bucuresti, ROMANIA, Nov. 24th-27th,
2021); International Scientific and Practical Conference “HONCHAROV’S
READINGS” (Sumy, Ukraine, May 25, 2022,92-95); the Fifth International
Workshop on Environment and Geoscience (IWEG2022), (Qingdao, China, July 16-
18, 2022); the second International Workshop on Vertical Farming (VertiFarm2023),
(Chengdu, China, May 22-24, 2023).

The applicant’s contribution is in planning an experiment, organizing, and
conduct of analytical and experimental research in laboratory and production
conditions, analysis, processing, and generalization results, formulating conclusions
and recommendations, preparing materials for publication, and introducing of new
technologies into production.

Publications and scientific research achievements. During the period of
doctoral study, the author of the dissertation presented 30 scientific publications, 12
of which are in academic articles indexed by the Scopus/Web of Science scientometric
database, 4 articles in scientific professional publications of Ukraine, 6 articles in
scientific professional publications of other countries, 8 abstracts/papers in
conference proceedings; obtained 11 other scientific research achievements, including
4 Chinese patents and 7 Chinese computer software copyrights; presided over or
participated in 8 projects, including as the host, and applied for and are approved 4
projects at the provincial and departmental levels, 3 of which received the financial
support of the provincial government and a total of 230000 yuan was approved, and
as the main participant, participated in 5 projects and the indirectly available funds

can reach 1.2 million yuan.
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Structure and scope of the dissertation and scope of work. The dissertation

consists of an introduction, five sections, a summary and prospect, a 393-item list of
references, and six appendices. The full volume of the dissertation is presented in 293

pages of computer text, including 162 pages of the main part, 72 figures, and 16 tables.
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SECTION 1. REVIEW AND RELATED RESEARCH ON A PLANT

FACTORY WITH ARTIFICIAL LIGHTING

1.1 Research on intelligent building greenhouse plant factory and “3-
Positions and 1-Entity” development mode

1.1.1 Greenhouses, soilless cultivation, and plant factories

Smart facility agriculture occupies a very important position in agriculture, is
an important part of modern agriculture, and plays a very important role in the supply
of agricultural products (Lia et al., 2016; Symeonaki et al., 2019; Han et al., 2020).
Facility plant cultivation can get rid of the limitation of natural conditions and
environment of traditional agriculture by comprehensively regulating the
environmental factors of crop growth, and achieve high efficiency, high yield, high
quality, diversification and anti-seasonal vegetable production (Hu & Jie, 2013). At
present, from the early simple film mulching technology (Li et al., 2021; Zhao et al.,
2021), solar greenhouse (Esmaeli & Roshandel, 2020) and its related supporting
equipment are still the mainstream of facility agriculture, and its main idea is to make
full use of solar conditions for heat storage and heat preservation. After years of
development, the solar greenhouse has gradually developed into a comprehensive
large-scale modern intelligent greenhouse with mechanization, automation, network
and intelligence (Hemming et al., 2020; Liu et al., 2020). The development of
intensive facility agriculture has become the trend of modern agriculture of China
(Zheng, 2021).

In recent years, soilless cultivation technology (Zhu & Wang, 2013; Rathod et
al., 2021) has developed rapidly and has been widely used in facility agriculture.
Water cultivation, gravel cultivation, perlite plus peat cultivation and sawdust
cultivation are commonly used in modern solar greenhouse production. Soilless
cultivation is a trend of vegetable planting, which has the advantages of water-saving,
fertilizer saving, labour saving, high-yield and optimal product quality (Savvas &
Gruda, 2018). It has got rid of the limitation of soil, greatly expanded the agricultural
production space, and made it possible to carry out plant production on barren land,

with a very excellent development prospect. Almost all plant factories adopt soilless
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cultivation mode (Orsini et al., 2020).

With the research and practice of soilless cultivation, the development of LED
energy-saving plant light source and the research of all artificial light plant factories
are booming. In Japan, in recent years, the number of all artificial light source plant
factories has increased rapidly, accounting for 44.2% of all Japanese plant factories.
The proportion of combined solar and artificial light sources was 27.3%, and the
proportion of sunlight was 28.6% (Kim & Lee, 2017; Wei & Wang, 2019). In June
2016, the Institute of Botany of Chinese Academy of Sciences and Fujian San'an
group jointly built the artificial light plant factory in Fujian Province, which is the
largest single plant factory with one hundred thousand class cleanliness in the world.
It starts the landing and industrialization of the theory and technology of plant
cultivation by using full artificial light in China. In September 2017, the Wafangdian
plant factory of China Hualu Panasonic was completed and put into operation. On
May 3, 2020, the special report of "labor is the most glorious, struggle is the happiest
- don't use sunlight, don't use soil, intelligent production plant factory" of CCTV news
channel entered the plant factory for live broadcast. The vegetables here are cultivated
in an aseptic environment, no pesticides, zero residue and can be eaten immediately
after picking, which is healthy and environmentally friendly. From sowing to
marketing, the whole process is visual, traceable and remote monitoring and
managing. The intelligent, industrial and modern plant production mode has entered
the stage of industrialization, standardization and commercialization.

With the development of urban-rural integration (Yan et al., 2018; Zhao & Wan,
2021), the urban size is expanding, and the urban population is increasing rapidly, the
agricultural population is decreasing, the land suitable for vegetable planting is
decreasing due to the occupation of development and construction, the available
resources, especially the water resources supply, are in short supply due to the
vigorous consumption and waste, the climate environment is becoming fragile
because of the green land occupied by construction and development and
industrialization (Shrivastava et al., 2017). It is necessary to explore and develop more

land-saving, labor-saving, energy-saving, environmental protection, and efficient
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agricultural planting mode. The emergence of all artificial light source plant factories
is calling for the emergence of a more long-term, environmental protection, energy-
saving intelligent building greenhouse. Although its investment in the early stage is
large, its service life is very long, and the maintenance cost is relatively low in the
later stage. The key point is zero pollution, zero emission and aseptic organic
production. It can also break through the restrictions of geography, climate, space and
other conditions. A "plant factory" of high-rise buildings can even be built in the
downtown of a bustling commercial city, which provides a kind of high-quality fresh
vegetables to citizens (Bon et al., 2010; Orsini et al., 2013; Dona et al.,2021).

1.1.2 Building greenhouse, intelligent building greenhouse and plant
factory of intelligent building greenhouse

1.1.2.1 Development trend of greenhouse

The original idea of planting a greenhouse is to keep the earth's surface warm.
From the early simple film mulching to the plastic greenhouse (Xu et al., 2011),
arched shed (Wang, 2020), glass greenhouse (Jeong et al., 2020), ordinary solar
greenhouse, sunshade momentum, single solar greenhouse (Cao et al., 2019), multi-
span greenhouse (Rasheed et al., 2020), to large-scale intelligent solar greenhouse,
although the form of greenhouse has changed a lot, its essence limited by land,
sunlight and climate conditions has not changed. The stability and service life of
greenhouse construction cannot meet modern building standards. With the
development of soilless cultivation and full artificial plant lighting technology, the
greenhouse gradually has the technical conditions to get rid of the constraints and
restrictions of land and light conditions (Kozai, 2018). In order to achieve
uninterrupted agricultural production no matter where and under what climatic
conditions, the requirements for the stability, thermal insulation and durability of
greenhouse building structure become more and more important. Therefore, the birth
of architectural greenhouse is the call of the times, and once it appears, it will directly
be the intelligent building greenhouse: the most advanced form of plant growth

greenhouse. Fig. 1 shows the development trend of the greenhouse form.
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new-type of greenhonse based on modern architecture. They
have changed substantially in form and completely get rid of

Building greenhouse and intelligent building greenhouse are
the dependenceon land, sunlight and climate conditions.

and technical conditions, and there iz no
substantial change in the way of relying

Greenhouse is only the change of form
on land, sunlight and climate conditions.

Plastic greenhouse
(Arched shed)

Fig. 1 Development trend of greenhouse form.

1.1.2.2 The definition of building greenhouse and intelligent building
greenhouse

General buildings refer to permanent assets formed by manual construction
which are engineering buildings for people to live in, work, study, produce, manage,
entertain, store goods and carry out other social activities. The landscapes and gardens,
in a broad sense, are also part of architecture. More broadly, the conscious nesting of
animals can also be regarded as architecture. The building greenhouse to be discussed
here refers to modern buildings designed and built to provide an artificial environment
for plant growth. Therefore, the following definitions are given in this paper:

Building greenhouse is built through professional architectural function design,
mechanical design, aesthetic design, structural design and other comprehensive
architectural design, whose foundation is specially designed and treated and is a
permanent building with brick, sand and concrete or steel and concrete as the main
body. In order to improve land use efficiency, greenhouses are generally designed as
multi-storey or high-rise buildings.

The building greenhouse, in short, is a professional building that provides
plants with the most suitable growth according to the concepts, theories and methods
of modern architectural engineering design. Therefore, the building greenhouse is
very different from the existing greenhouse forms such as plastic greenhouse, arch
greenhouse, glass solar greenhouse and intelligent solar greenhouse and it is a new

greenhouse completely different from the existing greenhouse. Its structure is more
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stable and its service life 1s longer. High quality building greenhouses can be used

permanently. Moreover, constructing a building greenhouse is inseparable from the
development of high technology (Mofidi & Akbar, 2020). Therefore, this paper puts
forward the following concepts:

Intelligent building greenhouse refers to the comprehensive use of modern
information technologies such as the Internet, Internet of things, mobile
communication and mobile Internet, wireless sensor, automatic control, cloud
computing, big data, blockchain and artificial intelligence in the process of building
greenhouse and plant production, combined with greenhouse engineering
construction technology, soilless cultivation technology and all artificial light
cultivation technology. According to the plant life characteristics and growth process
model, the greenhouse environment is monitored in real time and dynamically, so as
to maintain the most suitable growth environment for each growth stage of the whole
plant life cycle, so as to realize the high-yield and high-quality production of plants.

1.1.2.3 Plant factory urgently needs intelligent building greenhouse

Plant factories are an efficient agricultural system that can realize the
continuous production of crops every year through high-precision environmental
control (Avgoustaki & Xydis, 2020; Huebbers & Buyel, 2020; Ares et al.,2021). The
intelligent control system can automatically control the temperature, humidity, light,
CO; concentration, nutrient solution, fertilizer and other elements of crop growth
environment, so that plant growth is not or rarely constrained by natural conditions.
It is a high-tech intensive industrial complex. Its production mode possesses
outstanding advantages that other modes of production cannot be compared with (Sun
et al., 2019). For a long time, the plant factory has been internationally recognized as
the most advanced development stage of facility agriculture, and is one of the
important indicators to measure the high-tech level of agriculture in a country (Yang,
2014). With the high concentration of urban population and the reduction of costs of
construction and operation of plant factories, plant factories will be the most effective
means to solve the problems of global resources, world population and environmental

degradation in the future, and it must develop rapidly.
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The intelligent building greenhouse will integrate high technology, enrich the

wisdom of mankind, break the traditional fetters of crop planting, and realize the high
intelligence and modernization in all aspects of plant production. After special design
and technical treatment, the plant production has been greatly extended in space.
Good fields are greatly saved. The growth time is shortened, and the efficiency of
vegetable production is improved. Intelligent building greenhouse is not limited by
land, region and climate. It can be built in areas with extremely hot or cold or rapid
deterioration of weather. It can also be built on barren saline alkali land, sand beach,
the Gobi Desert, polar area covered with ice and snow all year round. It can also be
built in the downtown of the city to be urban landmark buildings, developing tourism
and entertainment or becoming a picking garden, so as to extend and expand the
function of plant factories. The plant factory based on intelligent building greenhouse
can start planned production or realize order production. Just press a button to start a
plant production mode. The artificial intelligence system based on plant growth
process model can provide the most suitable production environment for different
growth stages of the plant according to the model of the target plant, so as to achieve
mass production, high yield and high quality production. The advantages of intelligent
building greenhouse gases have outstanding advantages, which should be the best
"production workshop" of plant factory in the future.

1.1.3 The strategic significance of developing intelligent greenhouse plant
factory

1.1.3.1 Consolidating food security strategy

Currently, food security, energy security and financial security, known as the
three major global economic security, are the important foundations of national
security (Hlaing, 2006; Tikhomirov, 2019). Grain and vegetables are the most
important necessities of life for people. Vegetables are essential for three meals a day.
With the development of society, the growth of population, the improvement of
people's quality of life and the enhancement of people's awareness of healthy diet, the
demand for food and vegetables will increase rigidly. Along with urbanization,

industrialization and modernization, problems such as climate deterioration,
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environmental pollution, poor quality of cultivated land, reduction of cultivated land,
shortage of water resources, structural contradiction between food supply and demand,
shortage of rural labor force and serious waste of grain have become increasingly
prominent (Lee, 2009; Huang et al., 2019; Grubor et al., 2020; Wang et al., 2021).
Food security is still affected by climate change, environmental pollution, natural
disasters, turbulence, emergencies, land and water shortage, ecological damage and
other factors. The novel coronavirus pneumonia has caused an emergency of food and
vegetable supply, and food crisis occurs frequently. The development of intelligent
greenhouse plant factories is one of the important measures of "storing grain in
technology" (Carthy et al., 2018; Jim et al., 2019; Lakhiar et al., 2020). It can
effectively overcome the influence of many adverse factors in the process of grain
and vegetable production, storage, transportation and sales, so as to strengthen and
consolidate food security. The intelligent building greenhouse plant factory is based
on the intelligent building greenhouse. It adopts soilless cultivation and artificial light
technology to plant in a highly intelligent, modern and precise controlled and clean
artificial growth environment. It does not need sunlight and soil. It can effectively
avoid the impact of adverse factors such as climate change, environmental pollution,
natural disasters, ecological damage and so on. Therefore, it can completely change
the supply of vegetables and plants. Not affected by the seasonal changes, the supply
of vegetables can be stable all year round. Moreover, this kind of plant factory does
not need soil at all, which can save a lot of land resources and strengthen the protection
for "storing grain in the field" in arable land. According to the population distribution
and the demand for vegetables, the intelligent building greenhouse plant factory can
be built in cities, deserts, densely populated areas and any other places where it is
needed. It can be directly produced and sold at any time, without long-term storage
and long-distance transportation. Even if there is an epidemic or other emergency, it
can ensure a timely and sufficient local supply of vegetables, thus consolidating the
food security.

1.1.3.2 Intensive use of land and improvement of cultivated land planting

structure
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Arable land is the essence of land and the foundation of grain production. It is

the material basis for human survival and is a scarce resource that is not renewable.
On the earth's surface, the total land area of the world is 13.081 billion hectares, of
which only 11.25% 1is cultivated land (data from Baidu wiki). According to the
situation of land use in the world, the proportion of farmland is quite low. However,
the arable land is facing various severe threats and challenges, such as rampant
occupation, abandonment, disaster erosion, pollution deterioration, soil erosion,
returning farmland to forest, the arable land area is decreasing and the quality is
deteriorating (Nath et al., 2015; Wu et al., 2018; Pravalie et al., 2021). Especially in
the development of urbanization, the rapid expansion of cities occupies a large
amount of the land, most of which is high-quality arable land. In the huge pressure of
the reduction and degradation of arable land, it is particularly important to make
intensive use of land, improve the utilization rate of land and improve the planting
structure of cultivated land. Intelligent building greenhouse plant factories can highly
intensively use land, greatly raise the land use efficiency. The intelligent building
greenhouse can be built into multilayer or high-rise buildings. In each layer of
production greenhouse, three-dimensional soilless cultivation can be adopted.
According to relevant reports, the three-dimensional planting of single-layer solar
greenhouse can increase the land use rate by three times (Despommier, 2013; Al-
Kodmany, 2018). Moreover, under the increasing pressure of less farmland left,
through reasonable layout, the intelligent building greenhouse plant factory was built
on the land with poor quality or unsuitable for sowing, which not only improved the
land utilization rate, but also improved and optimized the cultivated farmland planting
structure, thus alleviating the pressure from the reduction of arable land resulted by
social development to a certain extent.

1.1.3.3 Meet people's need for healthy diet

The ancients said: "we can have meals without meat for three days, but
vegetables are needed every day." It was found that many vitamins, minerals, trace
elements and related plant chemicals and enzymes are in vegetables and plants that

are effective antioxidants. They are not only healthy food materials with low salt, low
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fat and low sugar, but also can effectively reduce the damage to the human body
caused by environmental pollution and prevent many diseases (Volpe, 2019). It has
been proved in a number of studies and dietary practices at home and abroad that dark
green vegetables are good for preventing osteoporosis, obesity, diabetes, hypertension,
cardiovascular disease, coronary heart disease and many kinds of cancer, and there
are many benefits which have exceeded people's imagination (Griep et al., 2010). It
i1s demonstrated that most vegetables can be eaten raw, and it would be better to eat
raw, because raw vegetables can lock the vitamins, inorganic salts, anti-cancer factors
and physiological active substances inside from being damaged, which can contact
human mucosal cells more effectively to the maximum extent, so as to play a better
role (Feng et al., 2022). The intelligent building greenhouse plant factory is the most
suitable factory for vegetable planting. Vegetable production is carried out in a closed
artificial environment. The growth environment can be strictly managed, highly
sterilized. Chemical fertilizer is rarely used or no chemical fertilizer is used, and no
pesticide is used. The vegetable itself is a clean vegetable that can be eaten directly.
Clean vegetables will become the inherent label of intelligent building greenhouse
plant factories, and will become a world famous brand to meet people's growing
demand for high quality vegetables, so as to improve people's livelihood and living
standards.

1.1.4 The development model of '"3-Positions and 1-Entity"

1.1.4.1 The promotion of the ""3-Positions and 1-Entity"

The intelligent building greenhouse plant factory has large investment, high-
tech content and complex systems. In order to develop healthily and rapidly in the
market environment, there must be a suitable development mode. Fig. 2 shows the
new development model of "3-Positions and 1-Entity" in intelligent building
greenhouse plant factory. The "3-Positions and 1-Entity" mode refers to the "modern
company plus intelligent building greenhouse" as the business entity and production
entity of the intelligent building greenhouse plant factory, and integrates the
production, operation and management of '"factory production, corporate

management, brand marketing" (Yuan et al., 2018; Hirsch, 2020). The modern
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company is the creator of the market subject, and the intelligent building greenhouse

is the solid foundation of the plant production entity. The factory production,
corporate management and brand marketing are the three directions of the plant
factory facing the market, meeting the needs of high-grade life of consumers and
leading the modern agricultural industry. The four are integrated and inseparable.
Without the creativity of modern companies and the production "workshop" of plant
factories with intelligent building greenhouse, there will be no foundation for the
annual, large-scale, high-quality, intelligent, information-based and industrialization
of vegetable production, and it will be difficult to fully realize the construction goal.
Factory production, corporate management and brand marketing are useful tools for
the rapid growth and development of plant factories, which, to a large extent, ensure
the industrialization of production, the modernization of management, the high goal

of enterprise development and the high quality of plant or vegetable products.

modem company
o

mntelligent building
greenhouse

Fig. 2 New development mode of "3-Positions and 1-Entity".

1.1.4.2 Factory production

Factories, also known as "factories" and "production enterprises", are industrial
buildings used to produce goods. Modern factories generally have production lines
composed of large machines or equipment. In the past, the production of agricultural
products mainly depended on natural conditions such as land, sunlight and climate.
These conditions had their own movement rules, and the role of human intervention
was very limited, so it was difficult to popularize industrialized plant production. The
plant factory production of intelligent building greenhouse can realize plant planting,
equipment mechanization, intelligent operation, process standardization, three-
dimensional mode, capacity scale, production cycle and management system.

The plant production of intelligent building greenhouse plant factories will
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adopt the closed full artificial environment soilless cultivation. The temperature and
humidity, light, water, air required for plant growth and fertilizer will be fully
mechanized, fully automatic and multi factor precise control, so that the plant growth
environment is always in the most suitable plant growth state in the whole plant
growth process. The planting links including plant seedling, fixed planting, irrigation,
fertilization, shaping, harvesting, sorting, packaging, inspection and others will be
gradually realized mechanization, automation, information and intelligence. The plant
factory eventually will develop into an unmanned factory, where production workers
can produce at any time. With the in-depth application of artificial intelligence
technology in the greenhouse plant factory of intelligent building, as long as press the
start key, the expert system based on plant growth process model can realize the
control from the growth environment to all planting operations, until the package is
delivered to the warehouse for sale and shipment, and all operations are intelligent.

As the intelligent greenhouse building is a permanent building built by
professional design to engage in efficient production of plants. In order to fully raise
the utilization rate of land occupation, it is multi-storey buildings generally. Each floor
has production greenhouses, which can be used for plant production. Each production
greenhouse will adopt a multi-layer soilless cultivation bed or frame for stereoscopic
plant production to ensure scale production and increase production capacity. Because
plant production in the building greenhouse completely adopts artificial lighting
which can be precisely controlled according to the needs of plant growth, thus it
guarantees the plant production continuity and the periodicity, and ensure the fresh
plant vegetable year-round supply.

When large-scale production is carried out in the intelligent building production
greenhouse, the intelligent production control system will control the growth
environment and standardize the operation according to the preliminary model of
plant growth process constructed during the experimental planting. When the
operation is not carried out according to the standard operation or lack of
standardization, the system will send out intelligent prompting in time, so as to ensure

that each operation is accurate and standard, to ensure the optimization of plant
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production to achieve energy saving, high yield and high quality.

1.1.4.3 Corporate management

The so-called corporate management is to take plant factories as a general
production and operation enterprise, introduce the market mechanism and modern
enterprise management mode, and construct the corporate management mode
according to the form of corporatization, which includes organization optimization,
system perfection, standardization and efficiency of production process, high
professional quality of personnel, and large production capacity (Yekimov et al.,
2021). The introduction of corporate management mode in plant factories will change
the situation of agricultural development supported by the government and operated
by agricultural science and technology leaders, stimulate the vitality of various
production factors of agricultural industry, and make plant factories move towards the
development path of market-oriented, professional, high-tech, and intensive.

Agricultural modernization must be realized by agricultural industrialization
(Kremen et al., 2012). Agricultural industrialization is the inevitable choice of China's
agricultural modernization process (Gu & Zhang, 2015). It is necessary to guarantee
the production of a modern agricultural economy and fine modern enterprise
management system. Farmers with decentralized management are the main body of
traditional planting agriculture, whose economic capacity is limited and their
professional quality is generally not high, so it is difficult to become the main body
of modern agricultural industrialization. In the process of agricultural modernization
with commodity economy as the mainstream, the important role of the government is
to guide the adjustment and development direction of agricultural structure by
formulating incentive policies, so as to attract more social forces to invest in
intelligent greenhouse plant factories, and it is even possible to set up factories
directly with state investment to engage in modern plant production and management.
However, due to the special status of the government, it can’t be a part of its
industrialization. Even if the government invested, the plant factory still needs to be
operated in the form of corporation.

The fundamental problem of the development of modern agriculture lies in the
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contradiction between high investment and low investment level. The fundamental
way to solve the problems and form sustainable development is to improve the input
and management mechanism. We should increase agricultural input, raise investment
level and improve input-output efficiency. Once the intelligent building greenhouse
plant factory is born, it has the characteristics of modern agricultural industrialization,
such as specialization, integration, science and technology, and intensification.
Marketization, specialization, integration, intensification and standardization are the
outstanding advantages of modern enterprise management system and the fixed
attribute of corporatization (Arsenieva & Putyatina, 2021). The corporate
management of intelligent building greenhouse plant factories is the specific
embodiment of modern facility agriculture adapting to market demand. The corporate
management mode of plant factory can attract companies with strong capital to join
in, and the listed companies with outstanding performance can play a powerful role
in financing, drive social capital investment, and build a larger plant factory. On the
other hand, the company can efficiently combine high-quality resources in an
organized and planned way, carry out product development, market expansion,
industrial deepening and other development strategies, so as to rapidly promote the
efficient industrialization of plant factories.

1.1.4.4 Brand marketing

Brand marketing strategy is one of the effective ways for product marketing to
obtain a large market share (L1, 2019). Branding is the process of cultivating brands
and improving their value. It can stabilize the consumer group and quickly occupy a
larger market share. Through registered trademarks, it is convenient for consumers to
identify, identify and purchase plant factory products, which is conducive to
protecting the interests of consumers and promoting the consumption upgrading of
plant products. Moreover, the registered trademark can protect the legitimate rights
and interests, help to improve the product, standardize the production and sales
behavior, and expand the product composition. The developed modern agricultural
market needs the intelligent building greenhouse plant factory to establish the brand

development strategy in construction planning, improve the market awareness and
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occupy the commanding height of the market. This requires the plant products of

intelligent building greenhouse factories to meet the market demand. In the planning
and construction stage, it is necessary to accurately locate position for the market and
products, plan brand building from the long term, cultivate and register trademarks.
and actively improve the new varieties of plants, enhance the quality of plants and
perfect plant production technology and equipment, improve the service system,
commit to innovation and creation, strengthen advantages, enhance corporate image,
nurture corporate culture, enhance enterprise competitiveness in the activities of plant
product planning, to achieve rapid prosperity and growth. The brand marketing of
plant factory is market-oriented, aiming at meeting the diversified and high-quality
consumption of vegetables and plants, guiding the production factors such as social
capital, technical equipment and labour resources to concentrate on famous and
excellent products, transferring the superior resources to superior enterprises,
transforming resource advantages into quality advantages and efficiency advantages,
and promoting, optimizing and upgrading the structural adjustment of modern facility
agriculture industry , so as to promote the rapid development of intelligent building
greenhouse plant factory.

1.1.5 Conclusion and Prospect

Due to its good sealing, the building greenhouse can effectively ensure high
cleanliness and sterility indoors, prevent the invasion of diseases and pests, and
become a "production workshop" for clean and pollution-free plant production. It also
has good thermal insulation and heat preservation to cut down energy loss and reduce
carbon emissions. When large-scale planting of vegetables and herbs is carried out in
it, it can also clean the air to a certain extent, improve the amount of atmospheric
eutrophication, and improve the surrounding microenvironment and microclimate.
Moreover, the intelligent building greenhouse plant factory is built based on modern
buildings, which can be built anywhere, even in the city center, and is not limited by
climate conditions and geographical location. Therefore, it should be foreseen that the
intelligent building greenhouse plant factory will open a new era of urban productive

agriculture and become a beautiful landscape of the city.
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1.2 The developmental status and social needs of plant factory intelligence

in China

1.2.1 Intelligence and plant factories

With the rapid growth of population, large-scale expansion of cities, large-scale
reduction of arable land, shortage of land resources, global spread of epidemic
diseases, frequent occurrence of extreme weather, pesticide abuse, and serious
biological pollution, green and clean crop production, food supply, and fruit and
vegetable security are facing unprecedented enormous threats and challenges. On the
other hand, with rising living standards, people are increasingly demanding food
hygiene, nutrition, greenness, cleanliness, health and safety. Plant factories are one of
the effective methods to solve the above-mentioned problems and contradictions. A
plant factory refers to an efficient agricultural system that achieves annual planned
crop production in a vertical three-dimensional space under fully enclosed or semi-
enclosed conditions through high-precision environmental control (Yang, 2019).
Artificial lighting plant factories refer to plant industrial production facilities with
artificial lighting, insulation, and almost enclosed building structures (Kozai, 2013).
Compared with open-air fields and greenhouse agriculture, protective planting with
the same building area increased annual crop productivity by one order of magnitude
(Mitchell, 2004), while indoor crop production in multi-layer greenhouses increased
productivity by two orders of magnitude (Kozai et al., 2015). This type of
environmentally controlled agriculture is known worldwide as indoor agriculture,
urban agriculture, vertical agriculture, or plant factories. They have enormous
potential for fresh and clean plant production, providing fresh and healthy agricultural
products in a balanced manner throughout the year, without the need for long-distance
transportation and multiple transfers, and can be built anywhere and under climatic
conditions (Kozai et al., 2019). However, the initial construction investment of plant
factories is high, the electricity consumption is high, and the operating costs are high.
Moreover, planting management is mostly done manually, resulting in high labor
demands, management difficulties, and high administrative costs. Therefore, how to

increase the level of mechanization, digitization, automation and intelligence in the
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production process is the future research and development trend for the plant factory.

In recent years, plant factories have gradually become mechanized, digitalized,
semi-automated and semi-intelligent in the production processes of sowing, seedling
cultivation, transplanting, harvesting, transportation and logistics. The development
of automated logistics systems and the successful application of some industrial
production automation technologies have enabled automated handling of seedbeds
during transplantation and harvesting processes, effectively reducing labor workloads,
increasing production efficiency and reducing production costs. However, plant
factories with weak Al are still unable to meet the requirements of intelligent and
unmanned planting. Mechanization, digitization, automation, intelligence and
unmanned systems will be important directions for the intelligent development of
plant factories in order to reduce labor intensity, reduce human resource costs and
damage the plant growth environment caused by frequent entry and exit of operators.

In addition, the lighting, temperature, humidity, carbon dioxide, and nutrient
conditions required for the growth of different types of crops vary widely, and even
the same variety of crops have different environmental requirements at each stage of
growth. Therefore, it is not possible to regulate the environment for all plant growth
processes based on a single plant growth model, and comprehensive regulation needs
to be performed differently for different crops. However, so far, the production
practices of plant factories still lack more accurate plant growth models, more refined
production guidance and the necessary data support, resulting in poor crop growth,
low quality, low resource utilization and low production efficiency. Therefore, the
accuracy of production management metrics and production models is an important
guarantee for improving the labour productivity of plant factories.

1.2.2 Development status

At present, in the field of plant factories, many countries such as the
Netherlands, Japan, South Korea, the United States, Hungary and Israel are very
advanced and have achieved a high level of mechanization, automation and
intelligence to reduce the large amount of labor. Moreover, the rapid development of

plant factories in the form of miniaturization, domestication, miniaturization and
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vertical agriculture is also moving in a more intelligent direction. In recent years,

research progress and technological development in China's plant factories have been
rapid, and the momentum of development is strong. By the end of 2020, more than
200 commercial plant factories, more than 600 individual lighting plant laboratories
and more than 1,200 air-conditioned room laboratories have been built, gradually
making progress in the path of industrializing plant production. (China Zhiyan Data
Research Center, 2021). However, compared to the technical characteristics and
intelligent requirements of plant factories themselves, there is still a significant gap
(Zhang et al., 2021). Most of the existing equipment and systems come from other
technologies in solar greenhouses and facility agriculture. There is still a lot of room
for improvement in the hardware and software technologies needed for a plant factory
application environment. Researchers predict that in the near future, technological
research will make creative breakthroughs to improve the automation level of
efficient operation of plant cultivation (Zhang et al., 2019). In terms of hardware, due
to the complexity of crop growth processes, plant factory automation equipment needs
to be further integrated with plant agronomy. In terms of software, due to the lack of
a large amount of experimental data support, most plant factories in China mainly use
computer programs to independently adjust single factors based on empirical
parameters or expert systems, and their rationality and accuracy need to be further
improved (Fang et al., 2021).

1.2.3 Existing problems

1.2.3.1 Passive perception of environmental information

The acquisition of growth environment and biological feature information in
plant factories is the foundation of digitization, intelligence, and modernization of
plant factories (Wang et al., 2021). Traditional data monitoring and information
collection mainly relies on the deployment of various sensors or detection devices in
a plant factory, their transmission via various wired or wireless buses or protocols,
and their centralized collection via computers. This approach not only increases the
initial investment cost of the plant factory, but also complicates the communication

and wiring between systems, greatly limiting the movement of automated mechanical
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equipment within the plant factory (Xu, 2020). In addition, there are many metal

material frames in the planting workshop of the plant factory, which have strong
electromagnetic interference, poor wireless communication stability, low monitoring
information transmission rate, and frequent information loss (Zhang et al., 2019).

1.2.3.2 Low positioning accuracy of indoor intelligent mobile equipment

Plant factories have high requirements for air tightness, walls and insulation
materials may shield radio waves, and many indoor intelligent mobile devices that
rely on global positioning system (GPS) or BeiDou Navigation Satellite System (BDS)
and other satellite positioning systems cannot meet precise movement control due to
reduced positioning accuracy (Liu & Huang, 2021). At present, indoor positioning
mainly uses infrared, ultrasonic, Bluetooth, ultra-wideband, wireless LAN, RRFID
and other wireless positioning technologies, but these technologies have
electromagnetic interference, low accuracy, complex construction, limited scale, high
equipment cost and many other problems (Zhang, 2021; Li et al., 2021; Cao et al.,
2020). Therefore, a single indoor positioning technology is difficult to meet the needs
of indoor positioning in plant factories.

1.2.3.3 Low automation of planting management

In a plant factory, in addition to plant management such as germination, sowing,
seedling rearing, transplanting, inspection, replanting, pruning and harvesting, plant
culture requires decontamination and cleaning of equipment such as planting trays,
nutrient delivery equipment, reservoirs, filters and pipes. At present, these tasks are
not automated and the level of intelligence is so low that they are mostly done by hand
by operators (Liu et al., 2021; Ren et al., 2020). In addition, to fully utilize the 3D
space and expand the growing area, a multilayer hydroponic 3D vertical culture mode
is generally used. However, under this mode, the planting equipment is bulky, labor
intensity is high, and climbing operations are required, which poses significant safety
hazards (Zhang et al., 2019). In addition, due to the low level of overall automation
in this mode, a large number of personnel and equipment are required to repeatedly
enter and exit the cultivation workshop, which can easily bring pathogens and cause

environmental pollution (Liu, 2020; Yu & Liu, 2014).
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1.2.3.4 Inaccurate nutrient solution regulation and circulation

The growth of plants cannot be separated from sufficient nutrients. Insufficient
nutrients can reduce the yield and quality of plants, while excessive nutrient supply
can cause huge waste (Shao et al., 2021). In existing plant factories in China, the
preparation of nutrient solutions is mostly based on expert experience to determine
the mixing ratio of water and fertilizer. After being mixed and stirred, it is piped
directly to the roots of the plant, where it is then recycled. The mixing and
supplementation of nutrients lack scientific experimental data and crop growth model
support, and precise regulation has not yet been achieved (Yang et al., 2021; Zhang,
2021; Sun et al., 2018). In addition, the dissolution and dilution of solid nutrients, the
supplementation of nutrient solutions required for growth, and the control of waste
liquid recovery and discharge all require a large amount of manpower (Guo et al.,
2020; Xia, 2020).

1.2.4 Suggestions for the Development of Plant Factories

1.2.4.1 Research of information perception and acquisition

Agricultural ecological environment detection sensors and image sensors have
been installed on drones and mobile devices to construct target self searching and
active mobile unmanned monitoring system equipment, achieving fully automatic and
all-weather non-destructive testing of the planting environment and plant growth
situation in plant factories, and actively sensing comprehensive information. The
detection system is flexible and intelligent, with strong adaptability to different crops.
Moreover, they are connected to each other through Internet of Things technology,
forming a network without the need to install communication equipment and
additional wiring, thereby reducing system costs and improving communication
efficiency. In addition, multi-sensor fusion technology is used to comprehensively
process multi-sensor or multi-source information and data (Yang & Han, 2019), in
order to obtain richer and actionable information, enhance the effectiveness and
robustness of the sensor system, enhance the system's fault tolerance, and avoid the
limitations of a single sensor.

1.2.4.2 Study of indoor high-precision positioning of intelligent devices
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High-precision indoor positioning technology is one of the key technologies for

intelligent and unmanned plant factories. Related research has found that the visible
light emitted by LED lights used for plant growth lighting can not only be used for
plant photosynthesis, but also for rapid and high-precision positioning and navigation
of intelligent devices in plant factories (Wei et al., 2021). The dual function of lighting
and positioning can be achieved without the need for additional installation of special
positioning and navigation devices. It also overcomes the difficulties of weak indoor
satellite signals and high complexity of RF positioning technology, with strong anti-
interference and high positioning accuracy.

1.2.4.3 Research on precise regulation of environmental multi-factors

Various environmental factors affect plant growth and development in the
canopy and in the root zone in different ways, mainly including temperature and
humidity, light, moisture, CO, in the air, dissolved oxygen in the root zone, canopy
air circulation, nutrients, and minerals. Plants are affected by a combination of factors,
and a small change in one can cause a significant change in others. When combined
with plant growth, it can have a significant impact on plant development. Therefore,
it is a challenging task to promote rapid plant development while also improving the
integrated utilization rate of resources. At present, the precise coupling regulation of
multiple environmental factors has become one of the important contents of research
on plant intelligent factories. Crop growth process models and agricultural expert
systems are the foundation for intelligent plant factories to achieve multi-factor
coupling and precise regulation (Xu et al., 2021). Crop growth models can
quantitatively describe the dynamics of crop growth and development, fruit formation
and yield, based on meteorological conditions, soil conditions and crop management
measures. Agricultural expert systems can be applied in various areas of agriculture,
such as crop cultivation, plant protection, formula fertilization, agricultural economic
benefit analysis and marketing management. In China, research in these areas mainly
focuses on four aspects: multi-source environmental information fusion monitoring
(Yang et al., 2021), non-destructive monitoring of plant growth based on computer

vision (Liu, 2020), construction of crop growth models based on deep learning (Cen
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et al., 2020), and coupling and precise regulation of environmental factors based on

crop growth models (Zhu et al., 2020), mainly focusing on comprehensive intelligent
regulation of plant canopy and root zone. A crop growth model and expert decision-
making system for intelligent plant factories, including an expert decision-making
model library, mainly used for precise collaborative management of crop growth,
environmental changes, and intelligent facilities and equipment, predicting crop
growth trends, comprehensively analyzing various real-time monitoring information,
and developing a comprehensive dynamic management decision plan for nutrient
solution management, LED light modulation, and environmental factor regulation. At
the same time, the system also has functions such as agricultural material management,
technical database and personnel management, which can help increase the efficiency
of cultivation and reduce management costs.

1.2.4.4 Automatic precision logistics equipment research and development

By comprehensively utilizing technologies such as sensors, automatic control,
model driving, and visible light communication, low-cost autonomous mobile
seedbeds, three-dimensional multi-layer cultivation racks, and corresponding
logistics control systems have been designed and developed (Tang, 2017). The system
automatically transports the mobile seedbed or planting frame that needs to be
irrigated and planted to the designated location in the planting area, and also transports
the mobile seedbed or planting frame that needs to be harvested or processed to the
operating workshop, facilitating workers to concentrate on efficient operations or
other mechanical equipment for automatic processing.

1.2.5 Conclusions of this section

In recent years, with the rapid development of science and technology and the
national economy, China's facility agriculture has developed rapidly. Plant factories
are an important component of facility agriculture, and their scientific basic research,
construction engineering techniques and production information management
capabilities have been continuously improved. Mechanization, digitization,
automation and the development of intelligence in plant factories are driving them to

become the new industrial form of modern agriculture. In the future, plant factories
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could be built directly in urban centers as a sustainable form of urban productive
agriculture.

1.3 Plant factory big data and plant growth model construction

1.3.1 Plant growth model and plant factory big data

With the growth of the global population and the acceleration of urbanization,
the traditional agricultural production model has been unable to meet the diversified
needs of people for clean, nutritious, pollution-free, multi-variety, high-quality, and
stable-priced vegetables that can be eaten fresh without washing. Plant factories have
gained widespread popularity as facilities that employ artificial light and regulate
environmental factors such as temperature, humidity, and CO, concentration to
simulate plant growth conditions. It enables the cultivation of crops with high quality
and yield, irrespective of geographical and temporal constraints, while at the same
time reducing water and soil consumption. The establishment of plant factories has
emerged as a viable solution to address pressing societal issues, including but not
limited to population expansion, decreasing arable land, climate deterioration,
resource scarcity, regional instability, and sudden epidemics (Wang et al., 2023). Plant
factories are highly efficient agricultural systems that produce crops in a vertical,
three-dimensional space on an annual schedule under completely confined or semi-
confined conditions and are an important part of Agriculture 4.0. It is recognized as
the highest stage of development in protected agriculture because of its use of
advanced technologies such as Internet of Things (IoT) technology, big data
technology, and deep learning. The Internet of Things (IoT) technology facilitates the
prompt collection of environmental data in plant factories. Big data technology
analyzes this data. Deep learning technology learns the patterns and laws of plant
growth from large amounts of data to build accurate plant models, which are used to
predict plant growth, detect and diagnose plant diseases, and help project the optimal
growth environment. Plant modeling is one of the key technologies of the plant factory,
which is systematic, dynamic, mechanism-based, predictive, and universal, and is an
important part of precision agriculture. It can assist plant factories in achieving

intelligent control, optimizing the plant growth environment, producing more



73
intelligently and efficiently, and real-time monitoring of plant growth.

Based on an overview of the types and status of plant models, this paper
discusses the system framework and methods for constructing plant models based on
[oT, big data, and deep learning technologies using environmental data such as
temperature, humidity, light intensity, and various index parameters of nutrient
solution and plant growth data in a plant factory production environment. In this paper,
it is proposed to construct a plant growth model using multi-source heterogeneous
data and multimodal neural networks. Furthermore, a general method based on plant
models 1s proposed to achieve automatic and intelligent prediction of plant growth
and efficient and stable production management. By building a cloud service platform,
model sharing and data sharing can be realized, thus a providing theoretical basis and
technical guidance for plant factories.

1.3.2 Research review of plant model

1.3.2.1 Development overview of plant model

In the 1960s, research on constructing plant models appeared in the field of
protected agriculture and made rapid progress. The initial plant models were primarily
concerned with morphological changes in the physical structure of the plant organism.
Some classic plant models in the world are DSSAT in the United States (Jones et al.,
2003), APSIM in Australia (Keating et al., 2003), STICS in France (Brisson et al.,
2003), and GECROS in the Netherlands (Yin and Van, 2005). Each of these growth
models can completely describe and predict the entire process of yield formation
during the plant growing season and can be used to promote agricultural technology
and provide advisory services. Since the 1990s, the University of Queensland in
Australia and the University of Calgary in Canada have developed Virtual Plants and
L-Studio systems based on the L-system, respectively. The system has been
developed and improved for simulating crop growth processes, resulting in a series
of morphological structure models that simulate the growth processes of cotton,
soybeans, corn, barley, rice, and other crops. The French Agricultural Research for
Development (CIRAD) has developed a series of AMAP software based on reference

axis technology for simulating plant 3D structures, simulating “plant-environment”
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interactions, and analyzing and calculating organ sizes (Zhu et al., 2019). Badjonski

and Ivanovi developed a genetic breeding multi-agent expert system (Barczi et al.,
2007, de Reffye et al., 1997, Godin et al., 1997, Seleznyova et al., 2003), which was
implemented to simulate breeding experts to select suitable varieties. Soffker et al.
(2019) proposed a model based on state machines. The model can define growth
behavior based on states and processes and has been applied to evaluate growth
predictions under different irrigation treatments during the nutritional stage of corn,
which can be used to evaluate growth predictions under different irrigation treatments
(Softker et al., 2019).

Research on greenhouse crop growth models began in the late 1970s and early
1980s. The prediction of plant growth and yield is increasingly becoming a significant
area of research and holds a crucial position in crop breeding, seedling, and planting
practices. Based on crop physiological processes, the plant model uses a series of
mathematical formulas to synthetically simulate the dynamic processes of crop
growth, development, and yield formation, expressing the principle that plants
explore their growth environment to obtain efficient and optimal resources. Building
plant models is particularly important for greenhouse production. Using plant growth
models, Yang et al. (2013) conducted a growth and yield prediction study of tomatoes
in greenhouses to explore the establishment and implementation of a greenhouse
tomato fruit growth model (Yang et al., 2013). By studying greenhouse climate
models and greenhouse crop growth models, Jin et al. (2022) proposed the use of
mathematical models to simulate greenhouse microclimates, recognizing the need for
indoor crop growth to quantify greenhouse systems and understand the complex
responses of crops to environmental and artificial management practices. It is also
recognized that the future trend in greenhouse crop production is an integrated system
using digital and robotic technologies as well as artificial intelligence technologies
(Jin et al., 2022). According to Luo et al. (2008), the growth of crops is significantly
associated with the effective accumulation of temperature and radiation within their
growing environment. The concept of photo-thermal product was introduced, and

simulations were conducted to examine the correlation between growth indicators and
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photo-thermal product of various crops, including greenhouse cucumber, tomato, and
melon. The results of the simulation were found to be satisfactory (Luo, 2008). Sun
and Chen (2003) et al. monitored the photo-thermal product under the solar
greenhouse and used it as a basis to derive the values of plant biomass accumulation,
thus establishing a growth model of plant biomass and photo-thermal product (Sun
and Chen, 2003). A simple two-stage crop model with a single state variable was
developed by Seginer et al. (1998). The behavior of the model is very similar to that
of the classic TOMGRO model. The optimal control strategy of this model can be
used as a suboptimal control for TOMGRO (Seginer et al., 1998). Vegesana et al.
(2013) explored the use of generic crop growth models that can be integrated into
farmers’ decision systems (Vegesana et al., 2013). Goodfellow et al. (2020) utilized
Generative Adversarial Networks (GANs) to generate lifelike images for the purpose
of predicting future frames. They also investigated the potential of incorporating both
spatial and temporal features of plant growth to produce more practical and
informative phenotypic data (Goodfellow et al., 2020). Sigalingging et al. (2023) used
the Cobb-Douglas model, a general model for predicting farm yields, to develop a
mathematical model using convolutional neural networks (CNN) for predicting
energy productivity during green onion cultivation in the Utara Hutajulu area of
Sumatra. The energy demand modeling and prediction system for green onion
cultivation on agricultural land, which predicts the energy productivity during green
onion production, can provide guidance to farmers in irrigation, fertilizer, and
pesticide application during cultivation and develop environmental health strategies
based on the energy domain for optimal yield (Sigalingging et al., 2023). Using
greenhouse climate sensors that capture real-time information and crop images,
Petropoulou et al. (2023) developed an autonomous artificial intelligence algorithm
that enables Al algorithms to autonomously control the production of greenhouse
lettuce crops (Petropoulou et al., 2023).

1.3.2.2 Classification and role of plant models
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Fig. 3 Classification of plant growth models

The plant models are mainly divided into function models, fertility models,
structure models and simulation models, as shown in Fig. 3. Using mathematical
techniques, function models express various functions and operations in plant growth.
It is a crucial model for researching the plant growth process and is used for plant
breeding, seedling raising, and planting guidance. Depending on the content of
concern, plant fertility models are divided into growth and developmental models.
Developmental models focus on the growth characteristics of plants on a time series
and predict the growth and development cycles of plants according to their different
growth periods. The growth model concentrates on plant phenotypic analysis, such as
plant height and leaf area, and aims to evaluate the growth status of plants and
indicators of growth. Structure models segment and detect the structures of stems,
leaves, flowers, and fruits of plants; build models of plants in different combinations;
reconstruct the structures of plants; and simulate and predict the growth of plants.
Simulation models use computers to simulate morphological changes during plant
growth and development, and establish 3D morphological models of plants through
visualization techniques, mostly for digital twin displays and scene modeling (Lin et
al.,2003; Sun and Shen, 2019; Zhu et al., 2019; Zhu et al., 2020). Based on the growth
process of plants, most of the general plant growth models do not consider the
influence of the environment, which leads to poor universality of plant growth models.
The ability to monitor and control the plant factory environment at any given time
reduces the impact of environmental factors on model construction. This, in turn,
decreases the complexity of plant model construction and enhances the accuracy of
plant models in simulating the functional mechanisms of plant growth processes.

1.3.2.3 Plant model construction method
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Traditional plant models are used for scientific research. Most of the

construction methods are based on mathematical and empirical models to
mathematically explain the processes of plant growth and development based on the
physiological and ecological mechanisms of plants. Spitters et al. (1986) analyzed the
distribution characteristics of light flux density within the plant canopy for
photosynthesis within the crop canopy and proposed a mathematical model of daily
crop plant assimilation by combining environmental factors such as temperature and
factors of crop physiological characteristics such as leaf area index and leaf angle
distribution. The instantaneous rate of photosynthesis was calculated from the plant
balance analysis, and the total assimilation of the plant during the corresponding
growth period was obtained by integral calculus. Some of them are used for the
consumption of life-sustaining respiration, growth and development respiration, and
the mathematical model of life-sustaining respiration and growth and development
respiration (Spitters et al., 1986). Using the sine function, Cheng et al. (2019)
calculated the trend of the temperature effect factor with temperature. Based on the
experimental data, the varietal parameters for each developmental stage were
determined, the growth and development process and key developmental periods of
solar greenhouse cucumber were quantified, and the establishment of a developmental
stage model, leaf area index model, and dry weight production model for greenhouse
cucumber was studied (Cheng et al., 2019). The flow chart of a typical plant

simulation model construction is shown in Fig. 4.
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Fig. 4 Flow chart of typical plant simulation model construction

Traditional plant models are descriptive and empirical, a black box type of
model. Based on the existing theoretical and practical experience, the relationships
between the study factors were identified and obtained through the statistical analysis
of a large amount of data. The acquisition of plant growth data, including leaf area,
plant height, photosynthesis rate, and environmental data, presents a significant
challenge due to the complexity of the process. The utilization of manual data
collection methods has emerged as a significant impediment to the advancement of
plant models. Furthermore, the limited state of computer technology results in
significant constraints on the model’s capacity for expansion and inference. Most of
the models lack systematic elaboration of plant mechanisms, and each step requires
multiple repetitions of the “build-manual correction-validation” process, which
requires human monitoring and correction. Traditional plant model building methods
have disadvantages such as complex structure, difficult implementation, and low
universality. The main building method based on the traditional plant growth model

is shown in Fig. 5.
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Fig. 5 Building method of traditional plant growth model

With the continuous development of information technology, deep learning
methods have played an important role in the acquisition of plant phenotype data. By
combining expert a priori knowledge and extracting high-level abstract features from

raw data, it achieves automatic and precise identification of plant phenotypic traits
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and can formulate optimal environmental control strategies based on the response
mechanisms of plants to the environment. Most plant modelling methods are based
on this idea:

(1) Systematically analyze the structure of plant growth and development,
determine the state variables, rate variables, driving variables, and interrelationships
between the variables of the system according to the physiological-ecological
principles of growth and development, map the correlations of the crop growth and
development system, and establish the mathematical equations of their
interrelationships and their changes over time;

(2) Using experimental observations to determine the parameters or coefficients
in the equation, programming the model in a computer language to implement the
computational process, and deriving the weight values for the different growth
conditions of the plant through multi-network fusion;

(3) Verify whether the algorithm of the model and the selected parameters are
reasonable according to the physiological-ecological principles of the plant; test the
algorithm of the model using the trial-and-error method using the data obtained from
several experiments so as to detect the sensitivity of the model; modify or reselect and
determine the model parameters for the corrected model;

(4) Compare the simulated processes and results of the model with the actual
observed data of the system and analyze the errors so as to verify whether the model
can simulate or predict the behavior of the plant system and its change trend. A model
can be applied if its simulation of the system or predicted trend is consistent with the
observed reality and the error is within an acceptable range.

Based on the unique tropic movement of plants as a heuristic criterion, Li et al.
(2020) proposed a parameter-free intelligent optimization algorithm, namely the plant
growth simulational algorithm (PGSA). This strategy and model provide the perfect
bionic prototype for the creation of algorithms to simulate plant growth. This original
work has facilitated a large number of subsequent studies and algorithmic applications
(L1 and Wang, 2020). Hautala et al. (2011) proposed a crop growth model named C3.

The model has a good consistency between simulated and measured values of biomass
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and leaf area, and the growth level of plants can be evaluated by collecting the amount
of radiation used by the crop (Hautala et al., 2011). Gu et al. (2022) proposed a
computer vision-based deep learning plant growth model analysis method and system
(Gu et al., 2022). It extracts phenotypic features such as plant height and leaf area
through deep learning models, and generates a relationship between the growing
environment and the plant growth state by mapping with environmental data.
Modeling based on regression algorithms and solution optimization solves a large
number of optimization problems that cannot be solved by traditional methods, with
high accuracy and reliability. Wang et al. (2022) used ST-LSTM to develop a plant
growth and development prediction model that successfully predicted the growth state
of Arabidopsis canopy leaf area, canopy width, and leaf number after a few days
(Wang et al., 2022), and Shibata et al. (2020) proposed a semi-supervised depth state
space model for plant growth modeling that estimated the change in sugar content of
tomatoes over a time sequence (Shibata et al., 2020). Based on various algorithms,
Sun et al. (2021) studied the fruit growth model of fruit trees. Through methods such
as comparative statistics, machine learning, and deep learning, LSTM models showed
greater accuracy and reliability in simulations of apple fruit diameters (Sun et al.,
2021).

1.3.3 10T, big data, deep learning and plant models in plant factories

The intelligent management system of a plant factory combines IoT, big data,
and deep learning technologies. IoT plays a supporting role, providing a
comprehensive perception of plant growth and environmental information.
Quantitative analysis and statistics of information are carried out by big data
technology, and the basis and data support for the subsequent construction of plant
models are provided through data processing, analysis and decision-making. Deep
learning is used to build models.

1.3.3.1 10T, Big Data and Deep Learning

IoT, big data, and deep learning technology are the important directions of the
development of computer technology at present. [oT integrates technologies such as

intelligent devices, sensors, communication technologies, and cloud computing. Big
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data technology is a collection of a large number of data processing technologies and
tools involving data storage, processing, analysis, mining, and visualization. Deep
learning is based on multi-level neural network model to learn the complex nonlinear
relationship between the input data to solve the regression problem, which cannot be
solved by mathematical methods or is difficult to solve. The number of nodes in
Wireless Sensor Networks (WSN) based on IoT can be increased, decreased, and
moved as needed, improving the application of data technology in agriculture (Zhang,
2020; Lei and Zhang, 2017). A variety of sensors in the plant factory use radio
frequency technology to independently network through the Wireless Sensor Network
technology and realize the collection, transmission, storage, and application of the
whole environmental data and plant growth data. The 10T three-layer model of the
plant factory is shown in Fig. 6.

The plant factory IoT is composed of a perception layer, a transport layer, and
an application layer. According to the communication protocol, the perception layer
detects plant growth data and environmental data in real time; the transport layer
transmits data to the application layer through WSN to realize information interaction;
the application layer processes and analyzes the data, intelligently identifies plant
phenotypes, precisely regulates the growth environment through terminal devices,
realizes intelligent management of plant growth, and makes the plant growth

environment optimal.
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The temperature, humidity, CO, concentration, nutrient solution liquid
temperature, nutrient solution PH value, nutrient solution EC value, plant growth
images, daily operation log, plant gene count, and market data of the plant factory
come from sensors, image acquisition equipment, the Internet and manual input. In a
highly automated and unified production environment, data of different types,
structures, and dimensions from different data sources constitute multi-source
heterogeneous data, such as time series data, structured data, unstructured data, etc.
The storage, computation, analysis and visualization of massive multi-source
heterogeneous data require technologies and methods from multiple fields, such as
data mining, machine learning, artificial intelligence, and statistics, for

comprehensive and integrated processing, as shown in Fig. 7.
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According to the characteristics of data sources and data types, different
analysis methods are used in this paper to integrate and analyze the data to support
the construction of plant models. To ensure data consistency and effectiveness, data
cleaning, normalization, and alignment are done on multi-source heterogeneous data.
Feature fusion of data acquired from different data sources is performed by sequential
fusion, parallel fusion, and deep fusion to obtain comprehensive and accurate
information (Zhang et al., 2018; Yu et al., 2020; Feng et al., 2021; Petropoulou et al.,
2023).

In recent years, deep learning has been widely used in the field of agriculture.
Deep learning techniques can extract multi-scale and multi-level features from plant
growth state image data and environmental change data on time series and then
combine high-level features based on these features to build plant models. Based on

computer vision support vector machines (SVM), random forests, artificial neural
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networks (ANN), convolutional neural networks (CNN), deep convolutional neural
networks (DCNN) and other algorithms using multi-level neural networks, deep
learning techniques can integrate expert a priori knowledge to extract high-level
abstract features from raw data and achieve automatic and accurate recognition of
phenotypic traits in massive big data. Convolutional neural networks (CNN),
recurrent neural networks (RNN), long short-term memory networks (LSTM), and
generative adversarial networks (GAN) are among the classical deep learning models
that have demonstrated promising outcomes in the modeling of plant growth.

Table 1 deep learning model

Target Model Model characteristics Field of application
Extract local or global features Computer  vision,
CNN image recognition,
. target detection, etc
image data Learn to generate realistic samples, Image generation,
GAN  distinguish between real samples and image editing,
generated samples, and thus generate image
high quality samples enhancement, etc

Process indeterminate long sequence Natural  language
RNN  data with memory capability, capture processing, speech
long-term dependencies in the data  recognition, stock
forecasting, etc
Use gating mechanisms to resolve Natural language
LSTM long-term dependencies processing,  stock
forecasting, video
analysis, etc
As shown in Table 1, CNNs can process image data of plants and infer the

Serial data

growth status of plants from plant morphology and size. RNN can process time
sequence data of plant growth, etc. LSTM is a special kind of RNN that effectively
circumvents the shortcomings of RNN, such as gradient disappearance and gradient
explosion during the training process, and can handle long-term plant growth data
with changes in plant height, weight, and morphology during different growth cycles.
GAN is trained to learn the features and distribution of plant images to generate new
virtual plant images similar to real plant images for plant breeding and variety
improvement.

1.3.3.2 Plant factory plant model significance
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IoT networking technology connects the intelligent monitoring system of the

whole plant factory, storing the two-dimensional or three-dimensional image data of
plant growth status collected by image devices such as ordinary cameras, depth
cameras, laser radar, and monitoring system of the plant factory, as well as
environmental data such as air and rhizosphere collected by various sensors, into the
database of the plant factory. The data generated by plant factories on a daily basis
provides sufficient data sets for building robust and generalizable plant models, and
the production data can be uploaded to the cloud service platform via the Internet. As
shown in Fig. 8, the cloud platform performs data analysis and processing and
provides data sharing and modeling services.

The plant model effectively manages the growth environment for plants during
various stages of growth, ensuring real-time and precise regulation. Additionally, it
optimizes energy consumption, resulting in a shortened growth cycle for plants. The
utilization of the plant model can facilitate the estimation of vegetable yield and
optimal timing for marketing, the assessment of vegetable growth status, the provision
of scientific principles and directions for plant factory production, and referencing
market data for sales management. Plant growth status information can be obtained
by managers or consumers through the utilization of a 3D visualized sci-fi animated

plant model, which can be interacted with by tapping various parts of the model.
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1.3.4 Plant model construction

1.3.4.1 Plant model building framework and method

There is variability in the biological indicators across different plant species.
During growth, the main concern needs to be the number of leaves, leaf area, and
plant height of leafy vegetables. The biological indicators that are of interest to berry
plants vary during different growth periods. In the initial stages, it is prudent to
prioritize the examination of leaf quantity, leaf surface area, and plant height. In the
later stages, the primary concern shifts to flowering number, fruit set, and fruit volume.
As a means of building plant model, deep learning methods do not require too much
attention to functional metrics during plant growth. It can calculate leaf surface area,
count fruits, etc. by segmenting the leaves of the plant and using an image
segmentation model. Based on specific networks, deep learning methods can predict
biomass, solving the problem of difficult manual collection of plant growth data as
well as environmental data and reducing a lot of tedious work compared to building
mathematical models. The framework of the plant growth model is shown in Fig. 9.

The first step is the acquisition and processing of plant growth image data and
environmental data. The training data comes from multiple sensor environmental
parameter log sheets, growth stage log sheets, operation records, manager experience,
and user feedback from different regions, which constitute multi-source
heterogeneous data. Pre-process the collected environmental data and plant growth
data, and annotate the growth image data. The morphological features of the plants in
the images are extracted using convolutional neural network segmentation and stored
in the cloud service system database after data pre-processing. The training set,
validation set, and test set are continuously enriched by increasing the annotated

image information, training classification models, and normalization operations.
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Fig. 9 Plant growth model construction in plant factory

The second step is to extract high-level abstract features from the raw data by
training the plant model. Through multi-modal feature extraction, multi-modal data
fusion, multi-modal learning integration, and training of multi-source data, CNN is
used for image segmentation, and the growth characteristics of plants are extracted as
image channel information. A multi-modal neural network trains multiple sub-models
hierarchically, and the feature representation is input into the main model RNN for
time sequence analysis and detection. Integrate multi-source environmental data, such
as light intensity and temperature, and do model training. Mapping models with the
best biological indicators and corresponding environmental information are sought
through iterative training. In an end-to-end way, multiple sub-models are jointly
trained in the same neural network, the multi-source data with mutual influence and
coupling relationships is integrated and processed, and the plant growth data and
environmental data in time series are mapped and regressed to establish the initial

model of plant growth and environment.
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Fig. 10 Closed-loop feedback system of plant growth model

Finally, the model is corrected and validated by actual production of
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environmental data and plant image data, as shown in Fig. 10. In order to improve the
regulation and prediction accuracy of the model, the initial model was applied to the
environmental regulation and yield prediction of the plant factory decision system
with fuzzy control of the environment. By collecting environmental data and plant
growth data in real time, the actual production environmental data, plant image data,
and prediction data are compared and fed back to the plant model to correct the model
parameters in time. Thus, a closed-loop strategy of “data collection - model
construction - actual production - environmental regulation - feedback - model
correction” 1s formed. Notably, the cloud service platform can achieve self-correction
of plant models by reducing manual intervention and inputting and matching growth
data and environmental data of the same plant from other production sites, which
contributes to the robustness of the model.

1.3.4.2 Application and prospect of plant models

Plant factory production involves a variety of fields such as protected
horticulture, protected environment and engineering, and automation. It uses the
powerful information processing and computing abilities of computers to
systematically analyze the whole growth and development process of plants and its
relationship with the influencing factors through a large amount of data training and
establish the best environmental model under different growth periods by combining
the relevant knowledge of plant growth and development. The introduction of generic
plant models, such as model equations for respiration and photosynthesis rates, can
be targeted and modified according to different application scenarios, and functional
models can be established according to plant species and growth periods to study the
functional changes in plants. The utilization of multi-source integrated real-time data
and real-time images of plant growth has the potential to facilitate plant growth model
prediction and simulation of plant growth status. Deep learning techniques for image
processing neural networks can segment and store individual organs of plants to build
a continuous library of plant organ models. Three-dimensional visualization
technology and image processing technology can build a three-dimensional

visualization simulation model of plants to evaluate plant height, leaf area, and other
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growth indicators. The plant factory connects various models to the decision system.
Based on the image data of plant growth status and environmental change data on
time series, vegetable varieties and corresponding growth periods can be selected
according to actual needs. The phenotype information of plant growth is output by the
decision system, which returns predicted images of plant growth, 3D visualization
effects, etc., and detects the plant growth status and field environment. The regulation
of the environment is achieved through the utilization of optimal conditions, which
entail the lowest energy consumption and the highest quality of plants. This approach
ensures that the regulation of the plant growth environment is carried out in a real-

time and precise manner, as shown in Fig. 11.
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According to Wang et al. (2022), plant factories need to rely on the rapid growth
and development of plant models in order to achieve multi-factor precise control,
industrial production, enterprise management, and brand marketing (Wang et al.,
2022). This, in turn, can accelerate the maturation of Chinese plant factories to “go
global” by enhancing the conditions and timing. The automation and precise control
of plant factory production processes have been facilitated by information technology,
particularly IoT, big data, and deep learning. Kolokotsa (2010) devised an intelligent
system for managing the indoor environment and energy consumption of a

greenhouse, thereby demonstrating the capacity of artificial intelligence to facilitate
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control and decision-making processes. The study also established the feasibility of

automated environmental control. According to Hamon (2010), there is a need for
further enhancement of the autonomy, robustness, and scalability of control systems
(Kolokotsa et al., 2010). The employment of growth models to conduct quantitative
analysis and dynamic simulation of plant growth, development, yield formation
processes, and environmental impacts for the purpose of optimizing decision-making
management has been a relatively recent research endeavor in China. Furthermore,
the majority of studies conducted in this area have focused on a single model. Huang
Jianxi suggested that future research efforts should be increased and multiple growth
models should be integrated to achieve mutual complementarity among various
models, which can improve the prediction and simulation accuracy of crop growth
models under uncertain conditions and reduce labor demand (Huang et al., 2018).
Cost issues and the development and implementation of more intelligent and expert
systems are currently the most pressing issues in the development of plant factories.
The plant factory industry is continuously enhancing plant growth models and
exchanging data and plant models through cloud service platforms. The forthcoming
path of plant factories is expected to prioritize cost-effectiveness, accessibility, and
intelligence.

1.3.5 Conclusions of this section

Currently, the Internet of Things (IoT) facilitates the interconnection of all
production units within the entire plant factory. Moreover, the plant model has
evolved into the central component of the intelligent control system of the plant
factory. The neural network can be utilized to facilitate the construction of plant
models by incorporating real-time or periodic data on plant growth and environmental
factors collected by various sensors. This approach enables the model to undergo self-
training and self-correction through feedback from the data, thereby reducing the
complexity of plant model construction and enhancing its precision over time. The
cloud service platform provides model and data resource sharing services, which
simplifies the plant model application method. However, the methods for constructing

plant models using multimodal neural networks and multi-source heterogeneous data



90

are procedurally intensive. The model training and data acquisition require a large
amount of arithmetic power, and the accuracy of traditional methods to assist in
verifying the model requires a large amount of manual measurement and testing. It is
imperative to incorporate IoT networking and cloud service platforms during the
initial stages of plant factory planning. Throughout the construction stage, it is
essential to access various data interfaces of plant factories across the globe, which
poses significant challenges to the security of the data network. The advancement of
computer technology and the emergence of lightweight neural networks, coupled with
the availability of plant factory production data from various regions globally, are
expected to enhance the precision of plant models through training feedback. It will
be applied to more applications and promote the advancement of plant factory
technology.

1.4 Multi-factor environmental regulation platform structure of artificial
light plant factory based on growth model

1.4.1 Plant growth model and plant factory environmental regulation

Where the dream can reach, so must the footsteps. Long has it been hoped that
plant production may be conducted in urban downtowns, icy polar areas, scorching
deserts, desolate territories, and even the wide expanse of space in the same manner
as industrial commodities production (TSURU & FUJII, 2006; Kim, 2010; Shamshiri
et al., 2018). Theoretically, plant factories are fully capable of optimizing the plant
growth process and improving plant growth quality and production efficiency by
creating an artificial plant growth environment and simulating the laws of movement
of the natural environment.

In 1957, the first plant factory was constructed on a Danish farm. The phrase
“plant factory” was coined by Japanese scholars and has since gained widespread
acceptance, becoming a new type of agricultural production sought after by urban
agriculture. Plant factories are horticultural facilities with a high degree of
environmental regulation and plant growth prediction based on environmental data
and plant growth monitoring, thereby producing a controlled environment for the

annual planned production of vegetables and other plants (Goto, 2012). Plant factories
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are highly efficient agricultural systems that achieve crop production in vertical three-
dimensional space and on an annual schedule through high-precision environmental
control under completely enclosed or semi-enclosed conditions (TAKATSUJI, 2010;
Kangetal., 2013). According to the different ways of using light energy, Toyoki Kozai
et al. classified plant factories into three types: sunlight-utilizing, mixed sunlight and
artificial light-utilizing, and artificial light-utilizing (Kozai, 2013). Chinese scholars
Yang (2014), Liu & Yang (2014), and He (2018) divided plant factories into two
categories: those that utilized sunlight and those that utilized artificial light (Yang,
2014; Liu & Yang, 2014; He, 2018). In contrast to the passive response of field and
greenhouse plant production to environmental changes, artificial light plant factories
have their own specific prerequisites and unique technological systems. It can
transform an unfavourable environment into one that is optimal for plant growth based
on the plant’s physiological and biochemical, growth and development requirements,
improve production efficiency, and reduce energy consumption; therefore, it is
necessary to develop a novel theory of environmental regulation.

A plant growth model is a simulation model that quantitatively describes plant
growth and development, output formation, and response to the environment using
system analysis and computer simulation principles. It is a complex model that
integrates plant, facility, environment, management measures, and their interactions
and has been deeply promoted and widely used in protected horticulture crop
production. In the midst of a severe energy crisis, crop models play a crucial role in
balancing these parameters to create the optimal growth environment for protected
crops with minimal inputs, hence attaining the production objectives of high quality,
high yield, and ecological safety.

With the accelerated pace of global urbanization, the spurt of urban expansion,
and the explosive growth of the urban population, modern metropolises are in urgent
need of agricultural systems suitable for urban areas and sustainable annual
production; consequently, artificial light plant factories have become the hope of
urban residents to consume fresh, clean, healthy, and safe vegetables. This dissertation

discusses the current research status of greenhouse microclimate dynamic simulation
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and plant growth model construction, analyses the adjustable environmental factors
affecting plant growth and their precise coupling regulation technology, proposes the
architecture of the multi-factor self-learning coupling precise regulation system
platform for artificial light plant factory environments based on deep learning and
growth model, and provides theoretical support and solutions for the design and
development of a plant factory intelligent control platform.

1.4.2 Greenhouse microclimate dynamic simulation and plant growth
model

The greenhouse is a hotbed for plant growth, a complex microenvironmental
system that includes three subsystems: soil, crop, and microclimate, and their
interrelated coupling systems. Agricultural models are an essential tool for the study
of quantitative laws and the precise management of agricultural problems; the
simulation of greenhouse microclimate using mathematical models is a major area of
quantitative research in greenhouse systems; and crop growth models are an important
component of optimal crop management (Katzin & Mourik, 2022). Based on the core
elements of the greenhouse climate model and crop growth model, the Functional-
Structural Plant Model (FSPM), which is currently in development, incorporates
abiotic environmental modules, genetic modules, and biological modules, as well as
3D technologies, to show crop performance and the biological processes involved in
its growth in 3D. The relationship among the climate model, crop model, and
functional-structural plant model is shown in Fig. 12.
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Fig. 12 Relationship diagram of climate model, crop model and functional-
structural plant model.

1.4.2.1 Research status of greenhouse microclimate dynamic simulation
models

Greenhouse climate dynamics models are divided into two categories:
mechanical models and black box models. The mechanical model is built on physical
principles in order to investigate quantitative algorithms that might be advised for
optimal greenhouse system control. The black box model is an empirical model that
is mainly used for greenhouse system control, optimization, and design. Bot (1983)
developed the first chemodynamical greenhouse climate model, and Henten (1994)
proposed the first greenhouse climate model with an optimal control objective. Taki
et al. (2016) used a multilayer perception neural network (MLP) model to predict
greenhouse temperature. These greenhouse climate models can be used to estimate
changes in the internal environment of protected greenhouses and to achieve precise
regulation of microclimate. Internationally, greenhouse simulation model research
began in the 1970s, and Kimball (1973) analyzed and studied a double-roofed full-
light greenhouse environment and performed dynamic simulations, which provided a
theoretical basis for improving greenhouse structure and optimizing environmental
regulation techniques. Dynamic simulation modeling of the greenhouse environment
was started in the 1980s. Kindelan et al. (1980) used the energy balance method to
simulate the indoor environment and divided the greenhouse environment into four
units: soil, plants, indoor air, and mulch. Bot et al. (1983) developed a dynamic
mechanics model of greenhouse climate by setting four levels of temperature
variables: mulch, air, crop canopy, and soil, and using temperature, humidity, sunlight,
and wind speed outside the greenhouse as input variables. In the 1990s, the study of
modular component simulation models was started. Zwart (1996) conducted a
modular study by dividing the greenhouse climate into physical modules for material
and energy transfer in the greenhouse and a large number of modules that simulate
conventional greenhouse climate controllers, using air temperature, CO,

concentration, and humidity as state variables, and developed the greenhouse process
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KASPRO model, which can be used to control heating, ventilation, dehumidification,

humidification, shading, artificial lighting, and CO, supply. During the same period,
Chinese scholars Cao et al. (1992) and Chen (1993) analyzed the relationship between
light environment and structure of a solar greenhouse and started research on the
simulation model of solar greenhouse microclimate dynamics in China. Subsequently,
Chen & Wang (1996) established a mathematical model of the thermal environment
based on heat transfer theory applicable to solar greenhouses to quantitatively reveal
the change pattern of the thermal environment of solar greenhouses. Since the 21st
century, conditional options have been added to greenhouse climate models from a
structural perspective, and Vanthoor et al. (2011) developed a dynamic model of the
effect of outdoor climate and greenhouse design on indoor greenhouse climate by
setting up four types of greenhouse operation models under three climatic conditions:
temperate maritime, Mediterranean, and semi-arid climate. In the past decade,
quantitative studies of greenhouse climate prediction and estimation have expanded
to include the complete spectrum of gas exchange, heat transfer, and energy balance.
Joudi and Farhan (2015) conducted a dynamic modeling study that accurately predicts
the indoor temperature by taking into account the heat exchange between the soil
surface and greenhouse air. Salazar et al. (2019) studied a dynamic energy balance
greenhouse climate model considering plant transpiration, ventilation, condensation,
outdoor climatic conditions, crop leaf area index, stomatal and air resistance,
mulching characteristics, and greenhouse characteristics in the greenhouse, and the
model efficiency was improved to 33.84 percent. In recent years, there has also been
a rapid development of greenhouse climate modeling research in China. Wei et al.
(2021) studied the greenhouse dynamic prediction model with improved heat transfer
theory and a mass-energy balance equation using internal and external environmental
data of tomato greenhouse substrate cultivation for three consecutive months in a
glass greenhouse as an experimental base. The results showed that the main
influencing factors of indoor temperature were outdoor temperature and solar
radiation, and the variation of indoor relative humidity was mainly affected by plant

transpiration rate, indoor temperature, ventilation, and air exchange. Zhang et al.
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(2020) studied the greenhouse mulch temperature prediction model and proposed a

dynamic absorption rate calculation method for greenhouse mulch, which divided the
solar radiation absorption rate of mulch into direct radiation absorption rate, scattered
radiation absorption rate, and reflected radiation absorption rate at the surface for
accurate calculation, respectively. Li (2021) optimized BP neural network parameters
with a differential evolutionary algorithm and a grey wolf algorithm for correlation
analysis affecting greenhouse temperature and humidity and established a short-term
prediction model for greenhouse temperature and humidity.

1.4.2.2 Plant growth model research

The plant growth model is a numerical simulation system based on the
mechanisms of crop physiological processes from the perspective of system science,
which includes climate, soil, crop varieties, and management measures on factors
affecting crop growth as an organic whole. Plant growth models can assess the
different effects of climate, soil, moisture, and crop management factors on crop
growth and development and are an important component of cultivation management
optimization. In recent years, it has been applied in many fields, such as
regionalization simulation, agricultural forecasting and risk analysis, climate change
impact assessment, macro-agricultural decision making, and optimization of
cultivation measures, and has become one of the most important tools for the
quantitative evaluation of agricultural production. With the rapid development of
intelligent technology in plant factories and the accelerated pace of marketization, the
realization of precise control of environmental multi-factor coupling is more
necessary for greenhouse plant growth model research. The current greenhouse crop
model is optimized and upgraded from the field crop model with the development of
protected agriculture. Compared with open-air and solar greenhouses’ environments,
artificial light plant factories are tightly enclosed, well insulated, and have a unique
plant growth environment, which requires the construction of a model for plant
growth 1n artificial light plant factory environments. Most modern solar greenhouses
are mostly cultivated for tomatoes and cucumbers, and there are mostly greenhouse

plant growth models with them as the main object of study. Some of the early well-
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known tomato plant simulation models are Tomsim-Susros87 (HEUVELINK, 1999),

Tompousse (Abreu et al., 2000), and Tomgro (Jones et al., 1991) models. Typical
cucumber models are the MarCeliS model, a simulation model of greenhouse
cucumber dry matter distribution constructed based on the sink strength theory, and
the KOSI model, which is based on the dry weight distribution and fruit growth model
of cucumber. Common plant growth models are Tomgro and Hortisim models (Gijzen
et al., 1997; Shamshiri et al., 2018), among which the Hortisim model can be
implemented as a general-purpose system to simulate the growth and development
processes of various horticultural crops such as tomatoes, cucumbers, and sweet
peppers. For different greenhouse environmental conditions, researchers have
conducted plant growth simulation model studies in terms of plant canopy structure,
dry matter accumulation distribution, the critical fertility period, and crop output. Li
et al. (2006) proposed the index of “photo-thermal product” and set the accumulated
photo-thermal product as the independent variable to simulate photosynthesis of the
leaf area index, thus establishing a simulation model of dry matter production and
improving the simulation accuracy of dry matter production in cucumber. Qian (2014)
extracted the dynamic and heterogeneous geometric parameters of the canopy
structure of cucumber populations, used an integrated model describing organ
dynamics and organ distribution heterogeneity to achieve the parametric construction
of a three-dimensional cucumber colony canopy, and performed systematic validation
using a multiscale approach. Chamont (1993) developed a model based on the Tomgro
model to simulate the dry matter distribution in cucumber fruits and roots. Sun et al.
(2005) developed a sub-model for dry matter production in greenhouse environments
based on TOMSIMM and Susros87 models by simulating photosynthesis with the
specific leaf area method and using temperature and solar radiation as environmental
driving variables for cucumber leaf area index. Shi et al. (2008) established a model
of aboveground growth and dry matter distribution of individual organs of cucumber
plants based on the Richards growth function and the theory of plant dry matter
distribution sink strength and simulated the distribution of plant dry matter before

fruit set. Vanthoor et al. (2011) conducted a simulation model study of tomato yield
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under different light conditions and CO, concentrations in the Netherlands and

southern Spain to establish a tomato yield model, and the experiment verified the
effect of very low and average high temperatures on the yield and harvest time of the
first spike of fruit. Zhou et al. (2018) verified that the LSTM recurrent neural network
model could predict the target yield of tomato with high accuracy.

In recent years, a lot of research has been conducted on constructing plant
growth models focusing on environmental management, crop response, and
simulation accuracy improvement. Li et al. (2021) developed a greenhouse tomato
Crop Water Stress Index (CWSI) prediction model based on Cuckoo Search
optimization CatBoost (CS Cat-Boost) based on nine internal and external greenhouse
parameters, including air temperature, humidity, and substrate moisture. Bao et al.
(2021) compared and analyzed the variation of indoor air temperature, relative
humidity, and light level in a 3-connected plastic greenhouse and a large-span film
greenhouse to construct a crop growth model based on photo-thermal products. Based
on the measured greenhouse tomato data, Niu et al. (2022) proposed a gradient
boosting decision tree (CatBoost) algorithm based on support classification features
to estimate the daily reference crop evapotranspiration in greenhouses. Li et al. (2021)
studied the DSSAT-CROPGRO-Tomato growth model to simulate the growth and
development and yield formation of tomato under straw return conditions in a
northern solar greenhouse and used the GLUE parameter estimation module to obtain
crop genetic parameters for different design scenarios.

1.4.2.3 Functional-Structural Plant Models

With the deep integration of mathematics, computer science, and botany, the
study of functional-structural plant models (FSPM), which introduce the concept of
plant architecture, has gained widespread attention, aiming to understand the complex
interactions between plant structure and plant growth processes (Evers et al., 2018;
Louarn & Song, 2020). Szanto (2016) designed a coupling module of steady-state
photosynthesis and stomatal conductance to develop a functional-structural plant
model of the greenhouse tomato. The model used the light tracing method for light

environment simulation, and the study showed that the eftect of border orientation on



98

light interception was weaker at higher solar altitude angles. Using plant organs as the
basic unit, Buck-Sorlin et al. (2022) performed multi-scale simulations of local light
interception and photosynthesis within each leaf, using a virtual greenhouse
environment with a functional-structural plant model (FSPM) with plants, light
sources, and photosynthesis active radiation (PAR) sensors. The model was designed
to reproduce PAR measurements for different light conditions at different times of the
day for different canopy positions, better simulating the process of rose production in
quality and quantity. Zhang (2019) conducted a cut flower plant experiment in a
greenhouse using lilies and roses to study plant responses to changes in PAR, R: FR,
water level, and nitrogen, and simulations validated that the FSP model could be
combined with a leaf photosynthesis model and a leaf climate model.

1.4.2.4 Plant growth model construction based on Internet of Things and
big data

Currently, with the development of greenhouse construction and artificial light
plant factory technology, intelligent digital multi-span greenhouses have become the
mainstream of greenhouses, with the possibility of moving to higher-end intelligent
greenhouses in the future (Wang et al., 2022). Greenhouse plant growth models are
evolving toward research that uses IoT sensors, climate models, and FSPM for
integration. Based on the idea of functional-structural plant modeling, Chen et al.
(2022) developed a 3D growth model for predicting tomato plants in an intelligent
multi-span greenhouse. The model was used to simulate tomato yield, CO, absorption,
nutrient, energy, and water use, as well as environmental impacts and benefits, while
also measuring dynamic growth indicators of tomato plants in real time. Plant factory
plant growth model construction can calculate and simulate environmental variables
for plant growth and development to estimate plant traits and microclimate conditions
using data generated from multiple sensors, such as multispectral 3D laser scanners,
chlorophyll fluorescence cameras, thermal imaging cameras, and climate sensors. The
model predictions allow adjustment of crop management strategies and identification
of improved plant traits. The future trend of plant production is the use of digital

technology, robotics, and artificial intelligence, the combination of plant growth
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models, the use of 10T sensors to collect greenhouse climate dynamic data, and the

use of cloud storage and computing analysis of these data so as to achieve the plant
factory environment’s multi-factor coupling precise intelligent regulation, and
optimization.

1.4.3 Environmental factors affecting plant growth in artificial light
plant factories and their integrated regulation

1.4.3.1 Composition of environmental factors affecting plant growth

Detailed sorting and comprehensive analysis of environmental factors affecting
plant growth are the basis for reducing production costs and conducting
comprehensive, coupling precise regulation. Generally speaking, the environmental
factors that have the greatest impact on plant growth include canopy environmental
factors in the above-ground part and root zone environmental factors in the
underground part. Environmental factors in the above-ground part include air
temperature, air humidity, canopy light, canopy branch density, canopy spatial
distribution, CO; concentration, airflow, gas composition, environmental cleanliness,
etc. Environmental factors in the underground part include root zone temperature,
water quality (cleanliness, water flow, and water velocity), fertilizer (nutrient and
mineral content, EC value), acidity (pH value), dissolved oxygen content, etc. In
summary, the factors affecting plant growth include the five basic elements of
temperature, light, water, air, and fertilizer, as well as other elements such as airflow
(wind circulation), dissolved oxygen, planting density, spatial distribution, and

environmental cleanliness, as shown in Fig. 13.
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Fig. 13 composition of environmental factors affecting plant growth.

1.4.3.2 Comprehensive environmental regulation
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The biggest difference between an enclosed modern intelligent greenhouse and

a solar greenhouse is that the intelligent greenhouse adopts permanent building
materials, which completely eliminates the need for sunlight and occupies arable land
resources. It has excellent sealing and thermal insulation, and all factors of the indoor
environment offered for plant growth are highly adjustable. Therefore, the core and
most critical task of an urban intelligent plant factory is to systematically and
intelligently regulate various indoor environmental factors affecting the growth and
development of vegetables and to combine a variety of environmental factors
organically for comprehensive environmental regulation to meet the needs of the
growth and development of protected vegetables. Theoretically, the process and
results of indoor environmental regulation changes should be compatible with the
growth and development of plants, their physiology and biochemistry, and other life
laws inherent to plants themselves, in order to obtain the best regulation effect and
improve the utilization of comprehensive resources. The relationship between
greenhouse, greenhouse microclimate model, plant growth model, and environmental

coupling precision regulation is shown in Fig. 14.
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1.4.4 Multi-factor self-learning coupling precision regulation model

The biggest challenge for intelligent plant factories based on artificial light
plant factories is that it is quite difficult to couple and precisely regulate all the
influencing factors to obtain the best environmental adaptation and the highest
integrated resource utilization for growing crops.

The growth and development of plants are indirectly or directly influenced and
constrained by various environmental factors, and the adaptability of different species
of plants to environmental factors varies, as does the adaptability of the same plant to
environmental factors at different growth stages. Therefore, in the process of plant
cultivation, especially in the enclosed plant factory environment, it is necessary to
take precise control measures according to the biological characteristics, habits, and
different growth stages of plants to create the best growth environment for crop

growth to meet their growth needs and obtain high quality and high yield.
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Inspired by the research on greenhouse climate model and plant growth model,

combined with the analysis of environmental factors affecting plant growth in
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artificial light plant factories, we proposed a multi-factor self-learning coupling
precision regulation model based on deep learning and a growth model. Our proposed
model consists of a machine vision-based pattern recognition system, an integrated
monitoring platform, a multi-factor precision regulation platform, a big data
integrated analysis platform, a self-learning growth model analysis platform, and an
integrated database system (growth model database, biological information database,
growth characteristics database, and system database). Fig. 15 hows the data and
information processing and the working process of the model.

(1) Real-time acquisition of plant biological information and growth status
information through an online image recognition system based on machine vision.
Binocular cameras are set up at the top and side ends of a single layer of the planting
shelf to take videos and images of plant growth at the right time. By converting,
processing, and pattern recognition of the captured images through an online image
recognition system, the biological information of the plants can be predicted, such as
the number of leaves, branches, leaf area, branch density, plant height, fresh weight,
dry weight, yield, and harvesting time. It can also predict the growth of plants, such
as plant growth stages, health conditions, early warning if there is a poor growth state,
giving the reasons for poor growth and preventive measures, etc. The prediction
information and data obtained are sent to the integrated monitoring platform for
processing.

(2) Monitoring data from the plant canopy and root zone are collected in real
time by the integrated monitoring platform. Various sensors are installed in the
production area to monitor the environmental conditions such as plant canopy
temperature, humidity, strength of illumination, CO, concentration, air flow rate, etc.,
and parameters such as nutrient solution temperature, flow rate, pH value, EC value,
and dissolved oxygen concentration in the root zone in real time. The integrated
monitoring platform stores the collected data in the database system and presents it
visually to the users.

(3) The monitoring data and system setting data are stored, managed, and

analyzed by the big data and big data comprehensive analysis platform.
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(4) The self-learning growth model analysis platform obtains the growth model

and growth characteristics data of plants through specialized deep learning algorithms
combined with the results of the big data analysis platform.

(5) According to the plant growth model and growth characteristics data, the
multi-factor precise coupling control platform will analyze and calculate the precise
control model, and the corresponding actuators will be precisely controlled by each
sub-controller to complete the regulation of environmental factors. Environmental
factors regulating devices are installed on each layer of the planting shelf to directly
regulate the plant growth environment. For example, CO, is directly delivered to each
shelf through the delivery pipe; airflow is directly regulated through the fan, etc.

(6) The integrated database system includes a crop growth model database, a
crop biological information database, a crop growth characteristics database, and a
system database.

1.4.5 Conclusions of this section

The intelligent greenhouse will become a modern “production workshop” for
future plant production that can intelligently regulate the ambient temperature and
humidity, simulate light, the concentration of carbon dioxide in the air and nutrients
in the soil, accurately supply water, accurately apply fertilizer, etc. to create and
maintain the optimal growth environment for plants. It can not only carry out real-
time intelligent regulation according to the growth characteristics of plants to
maintain a suitable and stable growth environment throughout the life cycle of plants
but also create specific climatic conditions for specific plants to produce vegetables
in a specific climate. The intelligent greenhouse is constructed in the countryside or
city by maximizing the geographical advantage, and the structure is relatively
enclosed and sealed, which allows it to overcome the limitations of climate and land
as well as prevent the attack of pests and diseases, making it ideal for the “factory”
production of clean vegetables and pollution-free vegetables. The proposed multi-
factor self-learning coupling precision regulation model based on deep learning and
growth model can improve the precision of plant factory environment regulation,

achieve energy saving, reduce cost, and improve comprehensive resource utilization,
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which can be better integrated into the development of cities, thus promoting its

landing construction and industrialization process in cities. It is imaginable and
predicted that the exquisite and delicious meals served to urban families in the future
will originate from local “plant factories.” The intelligent greenhouse will usher in

the era of urban plant factories.
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SECTION 2. EXPERIMENTAL PLATFORMS, MATERIALS AND

METHODS

The majority of Ph.D.-related experiments were conducted in the artificial light
plant factory laboratory of Henan Institute of Science and Technology, with a small
number conducted in the university’s solarium laboratory, the biological planting
laboratory, and the collaborator’s fruit tree base. This study’s experiments were
conducted between February 16, 2020 and February 20, 2023. The plant seeds for the
experiments were partly cultivated by other research teams of the university and partly
purchased from the market. The experimental environmental parameters were
measured in our laboratory, while plant growth, biomass, nutrient content, and other
parameters were measured in different laboratories with the assistance of faculty
members from other university faculties.

2.1 Introduction of artificial light plant factory laboratory

In May 2020, the Artificial Light Plant Factory Laboratory was established as
a comprehensive professional laboratory based on the discipline construction
planning and the need for interdisciplinary integration development, applied by the
School of Information Engineering and approved by the university, relying mainly on
the strength of computer science and technology, data science and engineering,
Internet of Things, agricultural engineering, control science and engineering,
mechanical engineering, agronomy, biology, botany, plant protection, horticulture and
landscape architecture, etc. The laboratory is currently the only fully artificial light
plant factory laboratory in Henan Province research institutes.

The lab is oriented on the national major development strategies such as
“Digital China” and “Rural Revitalization”, and focuses on the technical needs of
plant factory industrialization, with Internet of Things, big data analysis, artificial
intelligence, edge computing, intelligent decision-making and control, deep learning-
based plant growth model construction, agricultural engineering and environmental
control, agricultural information technology and agricultural intelligent system as the
core key technologies. The laboratory focuses on the research of plant production

factors demand law, data analysis and crop quality control system development, LED



106
energy-saving light source and its light environment intelligent control technology

research, water and fertilizer precision drip irrigation system and equipment
development, network management-based plant factory intelligent control equipment
development, to carry out basic and forward-looking technology research in the field
of intelligent plant factory. The laboratory transforms the traditional agricultural
production system, builds a modern agricultural industrial technology innovation
service system, undertakes scientific research and development and engineering
research tasks assigned by localities and industries, implements the promotion and
industrialization application of scientific and technological achievements, cultivates
high-level innovative talents, and provides verification conditions for industries.

With the strong support of university and college administrators and the efforts
of the entire laboratory staff, the laboratory has achieved rapid development in no
more than two years and is now equipped to independently conduct both single and
comprehensive experiments. Currently, relying on this laboratory, the plant factory
research team I lead has applied for and established six projects and requested 1.33
million yuan in government support funds. Four projects hosted by me have received
230,000 RMB in government funding.

2.2 Experimental conditions

2.2.1 experimental facilities and systems

The laboratory is fully equipped with plant growth environment monitoring
system equipment, plant growing frame, hydroponic tank, LED plant lighting and
control system, nutrient solution circulation control system, CO, fertilization
regulation system, water and fertilizer integration automatic circulation irrigation
machine, water treatment and circulation system, greenhouse environment integrated
control system, fresh air regulation system, airflow regulation fan system,
dehumidifier, UV disinfection lamp, etc. Through secondary programming, these
systems and equipment are able to conduct integrated intelligent control experiments
of greenhouses and simultaneous comparative experiments on the cultivation of
multiple groups of plants. In addition, the laboratory is equipped with specialized

desktop computers, laptops, projectors, and other office, study, and seminar
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equipment, as well as a variety of research and study tools. Some of the laboratory

equipment is shown in Fig. 16.

Fig. 16 Regulating means and experimental conditions of artificial light
laboratory in school: (a) Laboratory planting room of plant factory; (b) a leaf
vegetable trial planting shelf; (c) intelligent water fee integrated control equipment
and system; (d) light regulation and control; (¢) environmental temperature control
(programmable); (f) environmental humidity control; (g) carbon dioxide

concentration regulation; (h) airflow regulation of the planting rack; (I) fresh air
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system regulation (air exchange); (j) source water purification equipment; (k) outdoor

environmental monitoring wireless gateway; (1) plant factory integrated control
system.

Monitoring equipment, sensors, remote controllable execution unit, intelligent
equipment, and intelligent logic control unit for laboratory of artificial light plant

factory are shown in Fig. 17.

Fig. 17 Regulating means and experimental conditions of artificial light

laboratory in school: (a) Integrated temperature, humidity and CO; sensors, (b) EC,
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DO, PH sensor, (¢) EC, DO, PH sensor, (d) RGB-D camera image sensor, (¢) light

quality and intensity sensors, (f) level sensor, (g) execution unit-solenoid valve, (h)
execution unit-precision dispensing valve, (i) execution unit-return pump control, (j)
nutrient solution automatic circulation control equipment, (k) intelligent work robot,
(1) intelligent integrated front control system.

2.2.2 Experimental instruments

As shown in Fig. 18 Intel RealSense D455 RGB-D high-definition camera,
PLA-30 plant light analysis (Hangzhou Everfine Optoelectronics), Wseen LA-S panel
touch-control Windows leaf area meter, temperature and humidity sensor and
detection instrument, nutrient solution EC value detection instrument, PH value
detection instrument, nutrient solution composition monitoring instrument, small

automatic climate box, electronic scale, vernier caliper, ruler, etc.

Fig. 18 Experimental instrument: (a) PLA-30 plant illumination analysis
(Hangzhou Everfine Optoelectronics), (b) Intel RealSense D455 depth camera, (¢c) A
Wseen LA-S flat-panel touch-control leaf area meter, (d) Artificial climate chamber,
EC and PH meter.

2.2.3 Development environment and software

Intel RealSense D400 series SDK2.0, PythontOpenCV+Pytorch

comprehensive development environment software, device programmable interface



110
software, simulation software, etc.

2.3 Experimental materials

2.3.1 Experimental consumables

A variety of experimental leaf vegetable and solanaceous plant seeds, plant
nutrition solution, CO,, planting cotton, clean water, etc.

2.3.2 Main experiments carried out continuously in the laboratory on a
daily basis

The experimental planting and quality control of leaf vegetables are shown in

Fig. 19.

Fig. 19 Trial planting test of leaf vegetables: (a) germination-breaking, (b)

seedling production, (c¢) hydroponic leek in artificial light plant factory, (d)
hydroponic endive in an artificial light plant factory, (e) hydroponic lettuce in an
artificial light plant factory, (f) plant factory hydroponic sweet romaine lettuce.

The experiment of solanaceous fruit planting and quality control is shown in

Fig. 20.
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Fig. 20 Trial planting experiment of solanaceous plants in an artificial light
factory: (a) hydroponic tomato seedlings in a plant factory, (b) hydroponic cucumber
seedlings in a plant factory, (¢) hydroponic watermelon seedlings in a plant factory,
(d) hydroponic tomato in a plant factory, () hydroponic cucumber in a plant factory,
(f) hydroponic watermelon seedlings in a plant factory, (g) harvested tomatoes
reserved for planting, (h) harvested cucumber reserved for planting, (i) harvested
watermelons.

The crop growth monitoring experiment based on computer vision and RGB-

D camera is shown in Fig. 21.
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Fig. 21 Crop growth monitoring experiments: (a) RGB-D collection
experiment site, (b) collected RGB images, (c¢) collected depth images.

The grouping experiments of intelligent environmental regulation and quality
improvement of plant products were shown in Fig. 22.

The experiments are comprised of a multi-group grouping experiment and a
comprehensive regulation experiment, for example, plant hydroponics experiments;
fixed temperature and humidity, grouped to modify the light intensity, photoperiod,
different spectral combinations and other environmental factors of the comparison

experiments; plant growth quality control comparison experiments, etc.

Fig. 22 Comparison experiments of plant growth light formulations: (a)
3R:1B:2W weak light, (b) 1R:1B:3W weak light, (¢) 1R:3B:1W weak light.

2.4 Experimental platform for plant growth monitoring and phenotypic
analysis based on computer vision

2.4.1 Introduction to the experimental platform

The experimental platform has been developed independently to cater to the
research requirements of the project. It is a comprehensive platform that facilitates
non-destructive monitoring of plant phenotypes, intelligent growth monitoring, and

the creation of plant growth models. It is installed on the multi-layer, three-
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dimensional hydroponic planting frame in the artificial light plant factory laboratory

of the Henan Institute of Science and Technology and consists of a computer, an RGB-
D camera, a Canon 80D professional camera, light-adjustable LED lights, rails, and a
gantry, among other components. The system is capable of achieving automated
filming in order to gather image data pertaining to the growth of plants.

The experimental platform was utilized to conduct the studies presented in
Sections 3.1 and 3.2 of this doctoral dissertation.

2.4.2 Platform structure and design

The structure and design diagram of the experimental platform are shown in

Fig. 23.
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Fig. 23 Structure and design of the experimental platform for plant growth
monitoring and phenotype analysis based on computer vision. (a) front view, (b)

lateral view, (c) vertical view, (d) stereoscopic perspective view.
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During the continuous research process, the experimental platform has been

upgraded and improved multiple times, the structure and design diagram of the

improved experimental platform are shown in Fig. 24.
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Fig. 24 Structure and design of the improved experimental platform for
screening nutrient solution of hydroponic plants. (a) front view, (b) lateral view, (c)
vertical view, (d) stereoscopic perspective view.

2.4.3 Work scenario

Fig. 25 shows the real working scene of the platform in the artificial light plant
factory laboratory.
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Fig. 25 The real working scene of the experimental platform for plant growth
monitoring and phenotype analysis based on computer vision in the artificial light
plant factory laboratory. (a) Panorama of the experimental platform, (b) Overview of
experimental platform, (c) Seedling RGB image, (d) Seedling depth image, (e¢) Mixed
image of seedling RGB and depth.

2.5 Experimental platform for screening nutrient solution of hydroponic
plants

2.5.1 Introduction to the experimental platform

Plants exhibit varying requirements for light, nutrient solution, environmental
temperature, and humidity during different stages of growth. The author
independently created and developed the hydroponic plant nutrient solution screening
test platform to satisfy the research and experimental requirements. The platform is a
number of modifications to the two three-layer, three-dimensional hydroponic
planting racks in the artificial light plant factory laboratory, with six additional water
storage tanks and six submersible pumps, corresponding to the manual dispensing and
refilling of each layer of planting tanks in the planting racks with independent

circulation. The LED plant lights on each layer can be controlled independently in
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terms of light quality, light intensity, and photoperiod. Additionally, six sets of

comparative tests can be conducted to evaluate plant growth under the combined
influence of light, nutrient solution, and both light and nutrient solution.

The experimental platform was utilized to conduct the studies presented in
Sections 4.1 and 4.2 of this doctoral dissertation.

2.5.2 Platform composition and structure

The structure and design diagram of the experimental platform are shown in
Fig. 26.
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Fig. 26 Structure and design of the experimental platform for screening nutrient
solution of hydroponic plants. (a) front view, (b) lateral view, (¢) vertical view, (d)
stereoscopic perspective view.

2.5.3 Work scenario

Fig. 27 shows the real working scene of the experimental platform for screening



117
nutrient solution of hydroponic plants.

Fig. 27 The real working scene of the real working scene of the experimental
platform for screening nutrient solution of hydroponic plants in the artificial light
plant factory laboratory. (a) Panorama of the experimental platform, (b) Integrated
irrigation machine for water and fertilizer, (c) 6 sets of nutrient solution independent
circulation design, (d) Experiment on screening nutrient solution for hydroponic
cucumber cultivation.

2.6 Experimental platform for precise regulation and control of
environmental multi-factor coupling

2.6.1 Introduction to the experimental platform

With the assistance of the university, the author designed and constructed an
artificial light plant factory laboratory to facilitate the comprehensive research on the

multi-factor coupling and precise regulation of plant growth environments. The
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laboratory comprises a preparation room, operation room, and cultivation room,

allowing a wide range of experimental research activities, including monitoring of the
plant growth environment, non-destructive monitoring of multi-parameter growth
states, integrated regulation of multi-factor coupling, planting tests, plant factory IoT
tests, model verification, and system development.

The research for the doctoral dissertation was conducted in this laboratory.

2.6.2 Laboratory Design and Layout

The design and layout of artificial light plant factory laboratory for precise

regulation and control of environmental multi-factor coupling are shown in Fig. 28.
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Fig. 28 Design and layout of artificial light plant factory laboratory for precise
regulation and control of environmental multi-factor coupling.

2.6.3 Scientific research work scenario

The daily scientific research work scene of the artificial light plant factory
laboratory for precise regulation and control of environmental multi-factor coupling

is shown in Fig. 29.
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Fig. 29 The artificial light plant factory laboratory for precise regulation and
control of environmental multi-factor coupling: (a) Seeding; (b) Grow seedlings; (c)
Transplantation and planting; (d) Planting management; (¢) Growth observation; (f)

Experiential education.
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SECTION 3. BASIC RESEARCH RELATED TO BUILDING PLANT

GROWTH MODEL BASED ON DEEP LEARNING

3.1 Real time detection and counting method of tomato fruit in artificial
light plant factory based on yolov5

3.1.1 Deep Learning and Computer Vision in Agriculture

Artificial intelligence (Al) technology has penetrated the field of industrial and
agricultural production, which has extensively promoted the rapid development of
intelligence in various fields. The Plant Factory with Artificial Light (PFAL) (Kozai,
2019; Orsini, 2020; Ares, 2021) is widely regarded as the most advanced development
stage of facility horticulture in the world. It is also an excellent model of productive
urban agriculture that is most promising to effectively alleviate the great challenges
brought to agriculture by population expansion, urbanization, extreme climate,
sudden epidemic, regional production and supply imbalance, etc. The development of
PFALs is inseparable from the high intelligence of equipment. Water supply and
liquid supply for plant growth, light optimization and regulation, spatial environment
regulation, CO, concentration regulation, and operation equipment robots need a high
degree of automation and intelligence to achieve accurate control and reduce manual
participation. Although this increases the capital investment of equipment, it will
significantly reduce the amount of manual labor and labor investment cost.

The use of computer vision, deep learning and other artificial intelligence
technology to achieve real-time detection, identification, counting and dynamic yield
estimation of fruits and vegetables, its high accuracy, high degree of intelligence can
be used to guide the production robot picking and marketing management accurately.
The output estimation of fruits and vegetables in plant factories mainly depends on
expert experience, which is highly subjective and has low accuracy, so it cannot be
accurately used for production and marketing guidance. Picking mature fruits and
vegetables also mainly depends on manual operation, which is time-consuming,
laborious, high labor intensity and high cost. The trained fruit real-time detection
model is implanted into the robot, the accurate position of the fruit is detected through

the robot's machine vision system, and then the robot's manipulator accurately picks
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the fruit at the corresponding position, which will significantly reduce the damage of

picking to the plant, decrease the labor cost of picking and greatly improve the picking
efficiency. In order to obtain accurate dynamic yield estimation and accurate robot
picking, fruit detection based on computer vision and deep learning is the most basic
and essential task. Moreover, only when the fruit detection and recognition reach a
certain accuracy, robot picking can surpass manual picking (Sparrow et al., 2020).
Therefore, improving the accuracy of fruit detection is very important for robot
picking.

Computer vision is the basic component of the real-time detection of fruits and
vegetables. It is a rapidly developed technology based on target detection and image
recognition algorithms and is widely used in many industries. The development of
multi camera combined imaging system also makes computer vision technology meet
the requirements of target accuracy and quality (Jian et al., 2014). The speed and
accuracy of target detection based on computer vision provide an alternative to
automated, non-destructive and cost-effective technologies to achieve increased
production and quality requirements (Zhao et al., 2020). In recent years, great
progress has been made in target detection and image recognition technology, which
are increasingly widely used in agriculture, including the inspection and grading of
fruits and vegetables. Fan et al. (2020), Gao et al. (2020), Gené-Mola et al. (2019)
fused the deep learning model and computer vision technology, put forward the
system method of apple fruit real-time detection, achieved high detection speed and
accuracy, and realized the robot picking of apple. Sarabu et al. (2019), Nguyen et al.
(2019), Tu et al. (2020), Fu et al. (2020) applied RGB-D cameras in real-time fruit
detection and positioning to improve the positioning accuracy of robotic picking.
Gené-Mola et al. (2020) merged instance segmentation neural networks with
structure-from-motion (SfM) photography, proposed a new fruit detection and 3D
location method, and the detection rate can reach 99.1% when there is less fruit
occlusion. With the development of the target detection model and the wide
application of picking robots, the requirements for the accuracy and processing time

of non-destructive real-time fruit detection in agriculture are constantly improving.
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Therefore, the research on fruit target detection using the latest deep learning network

model is becoming more and more popular. Bargoti et al. (2017) generated a fruit
detection model using Faster R-CNN to to increase the fruit recognition rate. Wan et
al., (2019) Fu et al., (2020) Tu et al. (2020) applied the RGB-D camera to the picking
robot and carried out relevant research and experiments on the Faster R-CNN target
detection model. The results show that it greatly improves accuracy and can meet real-
time requirements. However, the detection speed of the Faster R-CNN is still not fast
enough, so it is not easy to be widely used in faster robot picking. Based on their
research on Faster R-CNN, Redmon et al. (2016) invented the YOLO target detection
model by computing target detection as a regression task, which greatly improves the
speed of target detection without reducing the detection accuracy. The YOLO model
has been continuously researched and rapidly developed in just a few years and has
evolved from YOLOVI to the latest YOLOvVS. The YOLOVS version includes four
more versions with different depths and widths, YOLOvVSS, YOLOv5M, YOLOVSL,
and YOLOVS5X, respectively, to meet application scenarios with different accuracy
and real-time requirements (Redmon et al., 2017; Redmon et al., 2018; Alexey et al.,
2020; Zhao et al., 2021). Luo et al. (2020) proposed an improved yolov3 pine cone
detection method based on the Boundary Equilibrium Generative Adversarial
Networks (BEGAN) and YOLOv3 model, for yield estimation of Korean pine forest.
Kuznetsova et al. (2020) developed an apple inspection machine vision system for
harvesting robots based on the YOLOvV3 model. The system uses pre-processing and
post-processing technology, with error rates and unrecognized rates of 7.8% and 9.2%,
respectively, and an average detection time of 19ms, and it can also be used for an
orange harvesting robot. Gao et al. (2021) used a deep learning development
framework of Keras and Tensorflow to construct the YOLOv3 model for detecting
and recognizing banana stems and banana bunches, with an average accuracy of 88.45%
and 97.96%, respectively. Wang et al. (2021) adjusted the prediction scale and reduced
the network layer based on YOLOV3, clustered the bounding boxes in the labeled data
to determine the priori box size suitable for Litchi detection using the K-means

algorithm, proposed an improved YOLOv3-Litchi model to detect densely distributed
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Litchi fruits in large visual scenes, then trained and tested the model. The results show

that the F1 value and average detection time are much better than YOLOv2, YOLOV3
and Faster R-CNN models. Liu et al.,, (2020) Lawal (2021) made various
improvements to the YOLOv3 model, and put forward the corresponding improved
YOLOV3 for the tomato fruit detection model that improved the detection speed of
dense, blocked, and overlapping tomato fruits under different lighting conditions and
enhanced the adaptability of harvesting robots for picking tomatoes. Chen et al. (2020)
used Kinect V2 camera to collect RGB images of citrus trees and then used a canopy
algorithm and K-means++ algorithm to automatically select the frame number and
frame size of the previous frame from the captured RGB images, and proposed an
improved yolov4 network structure. The model improves the detection ability of small
citrus under complex background, and can be applied to citrus automatic harvesting
robots and citrus yield estimation. Yan et al. (2021) improved the neck network,
backbone network, and initial anchor frame size of the YOLOv5s model and proposed
a lightweight apple target detection method for picking robots. The recall, accuracy,
mAP, F1 and detection speed for apple detection and recognition are significantly
improved over YOLOv3 and YOLOv4 models. Wang et al. (2022) constructed an
image acquisition system based on fruit posture adjustment equipment, and studied
the real-time detection and recognition of apple stem/calyx based on the YOLOvVS
algorithm used for automatic loading and packaging of fruits after harvesting.
Although the object detection based on YOLO can be applied in different directions
such as robotic picking, grading and sorting, and yield estimation, compared with the
research of applied YOLO to other fields, applying YOLOvS model to the PFALSs is
less.

Dwarf eggplant fruit vegetable varieties are most suitable for soilless
cultivation on the planting layer shelves, and will become the preferred species for
PFALs (Kozai, 2013a; Yang et al., 2018; He, 2018; Kozai et al., 2019). Fruit real-time
detection, counting and yield estimation are the important basis for mastering the
dynamic production information of the plant factory, carrying out planting planning,

formulating marketing strategies, and providing production data for the information
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service system that are also the key technologies for the plant factory to realize robot

harvesting, intelligent grading sorting and automatic packaging (Héni and Isler, 2019;
Bellocchio et al, 2019; Mekhalfi et al, 2020). Real-time statistics and prediction of
tomato fruit temporal yield information and corresponding production control to
achieve accurate response to supply orders are vital to solve the current problems of
large fluctuations in tomato production capacity and discontinuous production
processes (Jiang et al, 2019; Ohashi and Goto, 2020). Visual information acquisition
of tomato fruits is crucial to support intelligent yield estimation. However, tomato
plants in plant factories are overgrown and disorganized, and their stems, leaves, and
fruits grow densely and overlap, making fruit image recognition an important factor
limiting the accurate estimation of tomato yield. Moreover, the smaller fruit size of
dwarf tomatoes in plant factories, complex light environment, and dense branches and
leaves make accurate detection and identification more difficult. To this end, we
planted and gathered a large number of tomato pictures in the PFAL laboratory of our
university, in which the visible tomato fruits were precisely labeled to construct a
standard dataset of Micro-Tom tomatoes for plant factories. In addition, the standard
data set is extended through the data enhancement algorithm to construct the Micro-
Tom tomatoes extended dataset.

The remainder of this paper is composed as follows. Section 2 describes the
data acquisition, data annotation, and construction methods of Micro-Tom specific
datasets for dwarf tomatoes in plant factories. Section 3 discusses the data
enhancement methods and the improved YOLOvSs model. Section 4 provides an
analysis of the experimental results. Section 5 summarizes and draws conclusions.

3.1.2 Materials and datasets

The experimental site of this study is the PFAL laboratory of our university,
and the subjects of the study and detection are Micro-Tom dwarf tomatoes of
hydroponic in PFAL and greenhouse potted. In the experiment, a total of 2023 RGB
tomato images were obtained from multiple capture devices, including 1444 from
PFAL-hydroponics, 503 from greenhouse-potted, and 76 background images without
tomato (about 3.76% of the total dataset). A total of 40,500 tomato fruits were labeled
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using the Labelimg software, through a rectangular box, a combination of manual and
automatic annotation methods, and the corresponding XML annotation files were
generated and saved. First, a Micro-Tom dwarf tomato standard dataset was
constructed with the original image files. Then, 40,460 images were acquired by
geometric transformation and data enhancement algorithms to construct an extended
dataset of PFAL Micro-Tom dwarf tomatoes.

3.1.2.1. Experimental materials

The experimental site is the PFAL laboratory of Henan Institute of Science and
Technology (see Fig. 30. The research object is Micro-Tom dwarf tomato. The tomato
fruit 1s tiny and the ripe tomatoes resemble cherries, so we call them Cherry-Tomato.
Plant cultivation forms included PFAL-Shelvies-Hydroponics and Greenhouse-
Potted. The filming equipment included Nikon D7500, iPad Air, Huawei M6 tablet,
iPhone 13 Pro, vivo NEX, and so on. Data labeling software is the Labelimg v1.8.1.
Hardware and software platforms for model training include Lenovo tower server
ThinkSystem ST558 and Windows Server v2016 operating system, the hardware
configuration is Intel Xeon 4310 processor, 64GB RAM, 1 Samsung pm9al 1TB
solid-state drive, 3 4TB15K high-speed hard drives, and ThinkSystem NVIDIA
Quadro RTX 4000 8GB PCle active graphics card. Test materials include Intel
RealSense D455 camera, ordinary desktop or laptop computer, iPhone 13 Pro,

Android smartphone, etc.

(a) (b)
Fig. 30 Experimental site, a. the PFAL laboratory of our school, b. hydroponic

Micro-Tom tomatoes in our PFAL laboratory.

3.1.2.2. Image acquisition
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From August 2020 to December 2021, we conducted hydroponic and potted

Micro-Tom dwarf tomato experiments in 8 batches in the PFAL laboratory and
greenhouse of our university, and took photographs of Micro-Tom tomato fruits at
different growth stages with a minimum resolution of 3872*2592 pixels and a
maximum resolution of 6000* 4000 pixels. In order to obtain better training models
and higher robustness, robustness and generality of training models, we tried to
acquire tomato images with different growth environments, growth periods and poses.

3.1.2.3. Data annotations

The fineness of data annotation directly affects the performance and
effectiveness of deep learning model training. Moreover, Micro-Tom dwarf tomatoes
have tiny fruits, dense branches and leaves, severe overlapping occlusions, and
complex light environments in the PFAL where they grow. These factors overlap and
affect each other posing great challenges for automatic detection, recognition and
counting tomatoes. In the process of labeling tomatoes, we labeled all the tomatoes
that the naked eye in the picture can identify and determine the size of the labeling
box by exactly surrounding the exposed tomato. The software used for labeling was

the Labelimg software (https://github.com/tzutalin/labellmg 2022) which we have

improved, the VOC2007 was chosen as the data annotation standard, and the results
were saved in the corresponding XML file format, as shown in Fig. 31. We also wrote
a format conversion program that can flexibly convert XML format files to TXT
format files needed by other YOLOvVS5 models. In order to solve the massive workload
of accurate manual labeling, we have developed automatic labeling software, which
adopts the method of automatic labeling plus manual correction and supplement
labeling. The specific process is:

® first carry out a small amount of annotation,

® carry out model training, then

® carry out Micro-Tom fruit pre-detection,

® carry out automatic annotation and generate corresponding annotation files,

then manually correct and supplement annotations,

® carry out model training again, and


https://github.com/tzutalin/labelImg
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® repeat the above process.

This cycle and repeated iteration greatly save the workload of manual

annotation and improve the accuracy and efficiency of annotation.

8 labelimg DADD-software_development g AVOC2007JPEGImag INIG_3210jpg [7/205] o X

File Edit View Help

are_developmenti/abelimg;
fware_developmentijabelimg
prmentabelimg
pment|fabslimg.

om0 W @ 1730

Fig. 31 The Labelimg software and labeling example, using the VOC2007 data
standard.

3.1.2.4. Image data augmentation

Data enhancement is the most effective means to solve data sparsity and expand
the data set. Fewer training images may lead to overfitting or non-convergence of
depth learning algorithm, and using data augmentation to increase the number of
training images may be an effective method to solve this problem (Huang et al., 2020).
The translation, deformation and reflection of the image (Yann et al., 1998; Simard et
al., 2003; Krizhevsky et al., 2017) have significantly improved image recognition
performance (Zhang et al., 2020). In this study, different data augmentation methods
are used in the process of datasets construction and model training. This study mainly
uses 20 image data augmentation methods, such as flipping, rotation, RGB color
transformation, hue transformation in HLS domain, saturation transformation,
brightness transformation, Gaussian noise and Gaussian blur, which expand the
datasets and improve the effect of model training and the generalization ability of

target detection model, examples of image data augmentation is shown in Fig. 32.



Fig. 32 The image enhancement examples, a. original image, b. brightened

overall 1, c. brightened overall 2, d. darkened overall 1, e. darkened overall 2, f. blue
enhanced, g. green enhanced, h. red enhanced, 1. horizontal flipped, j. vertical flipped,
k. vertical and horizontal flipped, 1. Gaussian noise enhanced, m. Gaussian blur
enhanced, n. sharpening enhanced, o. hue enhanced 1, p. hue enhanced 2, q. saturation
enhanced, r. brightness enhanced, s. rotated 90°, t. rotated 180°, u. rotated 270°.

In the model training, the Mosaic data enhancement algorithm was added to the
image data at the input side of the model. The Mosaic data enhancement used four
images, which are spliced together in the way of random scaling, random clipping,
and random arrangement, and the results are shown in Fig. 33. After this operation, it
makes the originally larger targets become smaller after scaling down roughly twice,
thus reducing the over-response to large objects and enhancing the ability of the model
to detect small targets, which solves the problem of small target detection in the
datasets to a certain extent and increases the robustness of the network. And it also
reduces the use of GPU, making it possible to get good training results even with one

GPU.



129

Fig. 33 An example of Mosaic data augmentation on the training set during
model training. This algorithm used four images, which are spliced together in the
way of random scaling, random clipping, and random arrangement.

3.1.2.5. Micro-Tom datasets construction

In this study, two Micro-Tom datasets, the standard and the expanding, were
constructed. The Micro-Tom standard dataset is composed of captured original image
files and corresponding annotation files in XML format that there are 2023 RGB
image files in total, and each image file corresponds to one XML annotation file,
which includes 1444 images taken from hydroponic culture in the PFAL laboratory,
503 images taken from pot planting in greenhouse and 76 background images without
tomatoes. The data set is divided into training dataset, validation dataset and test
dataset by the program. The Micro-Tom expanding datasets consist of 42483 image
files (2023 original image files and 40460 enhanced image files) and corresponding
XML annotation files. Similarly, it is also divided into training data set, verification
data set and test data set by the program, and see Table 2 for datasets division and

composition.
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Table 2 Micro-Tom datasets Division and Composition.

Number of Number of Number of Number of Number of

Dataset Type original enhanced  tomatoes d;;zgﬁtln?; o test dataset
image files 1image files labeled & image files

files
Micro-Tom
2023 0 40416 1821 202
standard dataset
Micro-Tom
2023 42483 848736 38235 4248

expanding dataset

3.1.3 Methods and models

The YOLO series of deep learning network models is a very popular end-to-
end target detection model in the world, which has been widely used in various fields.
YOLOVS (Liu et al., 2020) is the latest version of the current YOLO series of network
models. In order to satisfy different real-time requirements, YOLOvVS5 has four
versions, namely, YOLOvSs, YOLOvSm, YOLOvS51 and YOLOv5x. Their kernel size,
complexity, and the number of super parameters increase in turn, and the network
depth and width gradually deepen and widen. As a result, they have high detection
accuracy for objects of different sizes. Their reasoning speed is fast, and the fastest
detection speed can reach 140 frames/s; their weight file is approximately 90%
smaller than YOLOv4. YOLOvS network has the advantages of high detection
accuracy, lightweight, and fast detection speed (Ultralytics, 2021), and it is suitable
for deployment to embedded terminals to complete real-time detection tasks. This
research takes the YOLOvVSs network as the benchmark model to improve, and puts
forward YOLOvVSs  MT model, which is verified, and compared with the real-time
detection performance of YOLOv3, YOLOv4 and YOLOVS series.

3.1.3.1 Improved yolovSs network model

The framework of the YOLOvV5s network model is shown in Fig. 34 and Fig.
35, which is composed of four main modules: input side, backbone network, neck
network and detection network. The input side preprocesses the input image that
uniformly scales the image size to the input size of the network, such as 608 pixels *

608 pixels, performs normalization and other operations. The improved YOLOv5
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network model utilizes Mosaic data enhancement operation in the network training

phase to improve the training speed of the model and the prediction accuracy of the
network and also proposes an adaptive anchor box calculation with an adaptive image
scaling method. The backbone network generally consists of a classifier network used
to extract some generic features of the detection target. YOLOvVS uses the
CSPDarknet53 structure and the Focus structure as the baseline network to aggregate
and form a convolutional neural network of image features at different image fine-
grained. The neck network is located between the backbone and head network,
consists of a series of network layers that mix and merge image features and transmit
the image features to the prediction layer. The improved YOLOvSs mainly use SPP
and FPN+PANET modules to improve the diversity and robustness of features further.
The detection network, namely the head, predicts the image features, generally
includes a classification branch and a regression branch, generates the boundary box
and prediction category, and outputs the result of target detection.

The Focus component, which concatenates multiple slice results and feeds
them into the CBL module, as shown in Fig. 35a. The CBL module consists of a
convolution layer network, a normalization operation, and a Leaky relu activation
function, as shown in Fig. 35b. The Res unit module, which draws lessons from the
residual structure of the ResNet network, is used to build a deep network, where CBL
is a sub-module of the Res_unit module, as shown in Fig. 35¢. The CSP1_X module,
which draws lessons from the CSPNet network structure, consists of CBL modules,
x Res unit modules, convolutional layers, Concate, Batch Normalization,
Leaky Relu and CBL modules, as shown in Fig. 35d. The CSP2_X module, which
draws lessons from the CSPNet network structure, consists of 2*x CBL modules,
convolutional layers, Concate, Batch Normalization, Leaky Relu module and CBL
modules, as shown in Fig. 35e. The SPP component used 1x1, 5%5, 9x9 and 13x13

maximum pooling for multi-scale feature fusion, as shown in Fig. 35f.
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76*76*23.) 38*38*255

Fig. 34 Improved YOLOVS5s network architecture, (a) Input side, (b) Backbone

network, (c) neck network, and (d) detection network, 1.e. head.

(a)

() [((em )=[MJ( w ()

Fig. 35 Improved YOLOvVSs components, (a) the focus component structure,
(b) the CBL module, (c) the Res unit module, (d) the CSP1_X module, (e) the
CSP2_ X module, (f) The SPP component.
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3.1.3.2 YOLOvSs MT improvements to YOLOVSs base network

In the backbone network of the YOLOvVSs model, the feature information
possessed by small targets decreases or disappears with the convolution operation,
which increases the difficulty of detecting small target objects. To address this
problem, this paper simplifies the feature extraction layer in the backbone network by
changing the number of modules of BottleneckCSP in the original backbone network
from (%3, X9, X9, x3) to (X2, x6, X6, x2) to extract more shallow feature information.
In order to solve the problem that too many convolution kernels make the amount of
parameters larger, the convolution layer on the branch of the original module is
removed and the input feature map of the BottleneckCSP module is directly connected
to the output feature map of another branch, effectively reducing the number of
parameters in the module. The improved BottleneckCSP module is called BCSP 1,

and its structure is shown in Fig. 36.

Illplll—{ Conv2d }—N BMN+Hardswish —DJ Baottleneck }.-L Conv:

J-»I Concat "':—n{BN+|_-c=.k_‘-k¢|u_"]-p'\ Conv2d

).

Fig. 36 BCSP _1 structure.

3.1.3.3 YOLOvSs MT improvements to YOLOVSs base network

For the input image, the fruit of Micro-Tom tomato is small, the branches and
leaves are lush, and the background occupies a large area of image. When performing
the convolution operation, the iterative accumulation of the background will form a
large amount of redundant information, which will overwhelm part of the target,
resulting in a low detection accuracy. In order to highlight the target features,
accurately locate and identify small tomatoes, and improve the detection accuracy,
this paper adds a Cooperative Attention mechanism (Hao et al., 2020; Li et al., 2021)
after the SPP structure of the backbone feature extraction network that embeds the
location information into the channel attention to capture not only the cross-channel
information but also the direction and location-aware information, so that the model
can more accurately locate and identify the target of interest, and its structure is shown
in Fig. 37.

CA encodes channel relationships and long-term dependencies with precise

location information. First, given the input X, the global average pooling is used to
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decompose and encode along wth the horizontal and vertical directions, respectively,
to obtain two one-dimensional direction-aware feature maps to realize the embedding
of coordinate information. Then, the extracted feature information is stitched together.
Next, the information is transformed using a 1x1 convolutional transform function,
which in turn yields an intermediate feature map. It is decomposed into two separate
tensors along the spatial dimension, and then transformed into a tensor with the same
number of channels using two convolutions. Finally, the output results are expanded
and used as the attentional weight assignment values, respectively, to generate the
coordinate information feature map.

[nput

Residual

CxHx1 [X Avg PUUI] Y Avg Pumlj CxIxW

v v
[ Concat+Conv2d ] C/rx1x (W H)
v
[ Concat+Conv2d ] C/odxX(W+H)

CxHx1 [X Avg Pool j [ Y Avg 1"001] CaxHxW

CxHx1 [.\' Avg }’:m]] [‘a' Avg |’w|j CxIxW

Re-weight CuHxW

Output

Fig. 37 Coordinate Attention.

3.1.3.4 Optimized anchor box setting

Nine anchor boxes are set according to the COCO dataset, which are: (10,13),
(16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326). In this
paper, three anchor box sizes are added for the small target with an unclear boundary
of Micro-Tom tomato, which is (5,6), (8,14), (15,11), respectively. The anchor boxes
are allocated according to the scale of the detection layer to detect smaller tomatoes,

and the anchor boxes distribution is shown in Table 3.
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Table 3 Anchor box allocation table.

Feature maps  20x20 40x40 80x80 160x160

Receptive field Large Little Large Medium  Small
(116,90) (30,61) (10,13) (5,6)

Anchor boxes  (156,198)  (62,45) (16,30) (8,14)
(373,326)  (59,119) (33,23) (15,11)

3.1.3.5 Improved loss function calculation
The improved YOLOv5s TM loss function defines three components of

confidence loss denoted as [, classification loss is denoted as [, and prediction

box location loss denoted as [,,, as shown in Formula 3-1-1.
Loss = lobj + lcls + lbox (3-1-1)

Target confidence loss 1, ; is defined as shown in Formula 3-1-2:
Ob] Z OZ] Oltomato (Cllog(Cl) + (1 - él)log(l - él)) -

Anotomato Z OZ] Oltomato (éiIOQ(Ci) + (1 — éi)log(l — él)) (3-1-2)

Target classification loss [.;sL is defined as shown in Formula 3-1-3:

cls = 252 ltomato Zceclasses (pl (C)log(Pi(C)) + (1 - pi (C)) log(l - Pi (C)))
(3-1-3)

The prediction box position loss [, i1s defined using the GloU loss function

as shown in Formula 3-1-4.

|C—(AUB)|

GloU = IoU —
IC]

(3-1-4)

In formula (4), A is the ground-truth bounding box, B is the bounding box, and
C is the minimum circumscribed rectangle of A and B, as shown in Fig. 38.

In the original YOLOvS5 model, GloU_loss is used as the regression loss
function of the bounding box, and the measurement of intersection scale is added to
GloU_loss to solve the problem that loU_loss cannot optimize the situation when the
prediction box and the target box do not intersect, i.e., the loss function is not
derivable when IoU = 0. It also solves the problem that IoU_loss cannot distinguish

the intersection of two prediction boxes when they have the same size and the same
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IoU. However, GloU_loss cannot solve the case where the prediction box is inside
the target box and the prediction box is the same size, because the difference set of

the prediction box and the target box is the same.

Fig. 38 The ground-truth bounding box, the bounding box and their
relationships, A is the ground-truth bounding box, B is the bounding box, and C is the
minimum circumscribed rectangle of A and B.

Therefore, this paper uses CloU_loss as the regression loss function of the
target detection task, and the calculation formula is shown in Formula 3-1-5. The
overlap area and center point distance between the prediction box and the target box
are considered in CloU_loss. When the target box wraps the prediction box, the
distance between the two boxes is measured directly; thus, the information of the
distance between the center point of the boundary box and the aspect ratio scale
information of the boundary box is taken into account, and the aspect ratios of the
prediction box to the target box are considered to make the boundary regression result

better.
2 gt
Leoy = 1—IoU + %j’) + av (3-1-5)
Where b represents the center point of the prediction box, b9t represents the
center point of the target box, p Indicates the Euclidean distance from the prediction

frame to the target frame, c represents the diagonal distance of the outer minimum

rectangle formed between the intersecting prediction box and the target box, a is a
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weight coefficient, and v is the parameter of consistency of aspect ratio, as shown in

formulas 3-1-6 and 3-1-7:

4 w3t w2
V== (arctanﬁ — arctan Z) (3-1-6)

v
aQ=—"
(1=IoU)+v

(3-1-7)

Where w and h are the width and height of the ground-truth box and the
bounding box, respectively.

The CloU loss function solves the problem that the loss values of the
prediction box and the target box are the same when they completely overlap at
different positions, making the model more accurate in prediction box positioning and
improving the detection performance of the model.

3.1.4 Results and Discussion

In this study, models of YOLOv3, YOLOv4, YOLOvS5s, YOLOv5Sm, YOLOvVS5I
and YOLOVS5x are trained using the standard Micro-Tom dataset, respectively. The
YOLOvV5s MT model is trained using the extended Micro-Tom dataset. The
performance of each model was compared by using precision (P), recall rate (R),
average precision (AP) and mean average precision (mAP) evaluation indexes, and
the corresponding model files were used for pre-detection of image files and video
files and to make real-time detection of tomatoes through smart terminals, and the test
results showed that the detection performance of YOLOvSs MT was significantly
better than the detection performance of other models.

3.1.4.1. Tomato distribution in dataset

The visualization results of the target box size and location distribution of the
tomato instances in the constructed Micro-Tom datasets are shown in Fig. 39. After
image size regularization, the target box center point distribution is shown in Fig. 39a.
The distribution of the length-width ratio of the target frame relative to the image is
shown in Fig. 39b. The combined two figures show that the target box size is not
uniform, the number of small tomatoes is high, and the tomatoes are mostly

concentrated in the middle of the image.



138

N

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.2 0.4

X width
(a) (b)

Fig. 39 Distribution of tomato instance target boxes in the Micro-Tom datasets,
a. distribution of target boxes position and b. distribution of target boxes size.

3.1.4.2. Network model performance evaluation

This study mainly selects the mean average precision (mAP) and F1 score as
the overall evaluation metrics of the network model performance. Precision (P) refers
to the fraction of relevant instances among the retrieved instances, also called positive
predictive value. Recall (R) refers to the fraction of retrieved relevant instances, also
known as sensitivity. The precision-recall rate curve (P-R curve) can be drawn
according to the relationship between precision and recall. The average precision (AP)
of all categories refers to the area of the area surrounded by the curve and coordinate
axes. If the AP of all categories is calculated and the mean value is taken, called mean

average precision, all kinds of mAP can be obtained, as shown in the formula (7) ~

(11).

P = TPT-:DFP (7)

R = TP’IjI-PFN (8)

AP = Num(TfZl(lt))bjects) ®)
mAP = % (10)
F1=222 (1)

Where, TP is the number of positive samples correctly predicted. FN is the
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number of negative samples that is incorrectly predicted. FP is the number of positive
samples that is incorrectly predicted. TN is the number of negative samples that is
correctly predicted. Num(TotalObjects) is the total number of target instances.
P(r) is the precision P corresponding to different recall r. AP; is the detection
precision of class i. N(class) is the number of categories.

The Micro-Tom dataset was randomly split into a training and a test set
according to a 9:1 ratio for model training. The input image size is 640 x 640, the
amount of batch training data is 32, the training momentum is 0.9, the initial learning
rate is set to 0.001, the weight attenuation is 0.0005, 300 batches (epochs) are trained,
and the stochastic gradient descent (SGD) is used as the optimization function to train
the model. The YOLOV3, YOLOv4, and Yolov5 series models are trained using the
standard Micro-Tom dataset, and the YOLOvS5s MT model is trained using the
extended Micro-Tom dataset, and the training results are shown in Fig. 40 and Fig.
41. As can be seen from Fig. 40, the YOLOvSs MT model has fast training
convergence, the loss value is stable and tends to 0, and there is no phenomenon of
underfitting and overfitting, and the convergence of the model is obviously better than
other comparative models. The improved YOLOv5s MT having the best detection

performance can also be seen as from the PR and F1 curves Fig. 41.
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Fig. 40 Results of the loss function, accuracy and recall rate of the model

training process.
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Fig. 41 Precision, Recall, P-R and F1 score curves of model training.

The model training performance results are shown in Table 4. The precision,

recall and mAP of the improved YOLOvS5s MT algorithm reached 92.9%, 96.0% and
95.9%, respectively. The results demonstrate that the enhanced YOLOv5s MT

algorithm proposed in this paper has better overall performance for Micro-Tom

tomato image detection and recognition.

Table 4 Precision, Recall and mAP results of the improved model

YOLOv5s MT.
Model Precision  Recall mAP mAP@0.5:0.95

YOLOV3 0.967 0.989 0.893  0.863@0.583

YOLOv5n 0.922 0.969 0.859  0.838@0.437
YOLOVSs 0.949 0.968 0.865  0.841@0.557
YOLOvSm 0.964 0.975 0.878  0.851@0.511
YOLOvSI 0.970 0.982 0.882  0.854@0.518
YOLOv5x 0.912 0.970 0.890  0.851@0.495
YOLOvSs MT 0.904 0.981 0976  0.961@0.499
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3.1.4.3. Ablation experimental results

To analyze the contribution of the improvement method proposed in this paper
to the performance of the YOLOvSs MT algorithm, ablation experiments were
designed and conducted. The experiments were conducted using YOLOVSs as the
benchmark algorithm, with the optimized BottlenckCSP structure as improvement
point 1, the addition of attention mechanism as improvement point 2, and the
improvement of the border regression loss function as improvement point 3, and the
improvement points were gradually increased, and the models were trained with a
uniform Micro-Tom standard data set and the same training parameters, respectively,
and the experimental results are shown in Table 5, """ means the corresponding
improvement strategy is used in the network model, "%" means the corresponding
improvement strategy is not used in the network model. The analysis of Table 2 shows
that the optimization algorithm 1 uses the BCSP 1 structure to replace the original
BottleneckCSP in the backbone network and adjusts the number of modules to ensure
that the small target can make better use of shallow features and reduce the number
of model parameters, so that the model has a small increase in mAP and a large
increase in FPS. The optimization algorithm 2 adds the attention mechanism to the
benchmark model, so that the model embeds the spatial information into the channel
attention, and due to the addition of location information, it has a better prediction
effect for the dense detection task relying on location information. Optimization
algorithm 3 introduces CloU as the loss function of boundary box regression to solve
the problem that GIloU is reduced to loU when the target box coincides with the
prediction box in the original loss function, and improves the positioning accuracy of
the model boundary box. The mAP value of the improved YOLOv5s MT model is
0.959, which is 9.4% higher than that of the pre-improved YOLOvS5s. The number of
frames transmitted per second is 93.38, which is only 2.98 different from the

benchmark model, and less video memory is required in training.
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algorithm improvement improvement improvement AP FPS (Frames/s)
point 1 point 2 point 3

YOLOVS5s X X X 0.865 96.36
optimization

' v X X 0.873 109.92
algorithm 1
optimization

. X v X 0.876 108.76
algorithm 2
optimization

' X X v 0.925 93.65
algorithm 3
YOLOv5s MT v v v 0.959 93.38

3.1.4.4. Experimental test results

The trained obtained model files were imported into the pre-detection program,

and Micro-Tom tomato detection was performed on 200 image files and ten video

files obtained from the PFAL laboratory, as well as real-time tomato detection, was

carried out on video streams captured through the camera to verify the validity of the

model. When the detection confidence is set to 0.5, the configuration of the computer

terminal for the test is shown in Table 6, and the test results are shown in Fig. 42 and

Table 7.

Table 6 Composition and performance of Micro-Tom fruit detection and

counting computer test terminal

component Configuration and performance description
CPU Intel 17-9700 @3.00G

RAM 16GB DRR4 2666MHz

GPU Nvidia GTX 1650 4GB

SSD 256GB

DISK 1TB

operating system  Windows10 Home

As can be seen from Fig. 42, the YOLOvV3, YOLOv5n, YOLOvS5s, YOLOvS5m,
YOLOVS5], YOLOv5x, and the improved YOLOv5s_ MT model, respectively, is used

for the Micro-Tom tomato target detection of the same image file which is randomly
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selected. The number of correctly recognized tomatoes are 60, 67, 66, 70, 74, 75, and

77 and the average confidence is 0.8174, 0.8181, 0.8454, 0.8710, 0.7312, 0.7675 and
0.7275. Improved yolovSs  MT compared with yolov5s model, although its average
confidence is reduced, the accuracy of fruit detection is improved, which is 17%

higher.

(a) The results of detection and counting with the trained YOLOv3 model in

the actual scene target detection. The number of detected tomato fruits was 60, and

the average confidence was 0.817, see the blue text in the figure.
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(b) The results of detection and counting with the trained YOLOv5n model

in the actual scene target detection. The number of detected tomato fruits was 67, and

the average confidence was 0.818, see the blue text in the figure.

(¢) The results of detection and counting with the trained YOLOv5s model

in the actual scene target detection. The number of detected tomato fruits was 66, and

the average confidence was 0.845, see the blue text in the figure.

(d) The results of detection and counting with the trained YOLOv5m model

in the actual scene target detection. The number of detected tomato fruits was 70, and



145
the average confidence was 0.871, see the blue text in the figure.

(e) The results of detection and counting with the trained YOLOv51 model

in the actual scene target detection. The number of detected tomato fruits was 74, and

the average confidence was 0.737, see the blue text in the figure.

(f) The results of detection and counting with the trained YOLOv5x model

in the actual scene target detection. The number of detected tomato fruits was 75, and

the average confidence was 0.767, see the blue text in the figure.
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(g) The results of detection and counting with the trained improved

YOLOvSs MT model in the actual scene target detection. The number of detected

tomato fruits was 77, and the average confidence was 0.727, see the blue text in the

figure.

Fig. 42 Comparison of fruit detection results of Micro-Tom images.

From Fig. 42 and Table 7, it can be shown that the yolov5s MT model does

not accelerate its detection speed compared with the yolov5s model corresponding to

the network scale, but its comprehensive performance has been significantly

enhanced.

Table 7 Tomato target detection results.

Model Size Image Video FPS GFLOPs ParamsLayers Weight file
@640(B) (M) size (MB)

YOLOV3 640 755 456 21931547 6150 261 470
YOLOv5n 640 372 17.5 465 42 1.76 213 139
YOLOvV5s 640 51.8 21.5 57.14158 7.01 213 54
YOLOv5m 640 545 260 3846479 20.85 290 159
YOLOVSI 640 71.7 37.1 26951078  46.11 367 352
YOLOv5x 640 180.6 1509 6.63 204.2  86.21 567 663
YOLOv5s MT 640 529 221 4524158 7.01 213 54

3.14.5. Comparison of comprehensive detection performance using
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different YOLO models

In this paper, the performance of different versions of the YOLO detection
algorithm trained on the Micro-Tom datasets is compared, and Table 8 shows the
experimental results of the model input size, mAP, Speed, FPS, and Params for
different algorithms, respectively. From this table, the following results can be
obtained: (1) for the unified Micro-Tom datasets, under the same experimental
conditions, input image resolution, and setting parameters, the detection speed of
YOLOv5s MT and YOLOvSs is faster, the model file is smaller, and a higher
detection speed can be obtained on devices with low computing power, which is very
suitable for real-time target detection on picking robots and mobile terminals. (2) the
comprehensive real-time detection performance of the improved YOLOvSs MT
model is better, which can be directly transplanted to tomato robot picking and
dynamic yield estimation and is widely used in plant factories. (3) all the YOLO series
detection models can meet the real-time detection and tracking detection of targets,
but each has its own advantages in terms of detection metrics, inference speed, and
model weight file size that can be adapted according to the actual situation and needs.
If you are more concerned about the speed, it is recommended to prefer the YOLOvSs
and YOLOv5s MT models. If accuracy is more important in some applications, the
YOLOvV5x model can be chosen. For the real-time detection of small targets, other
corresponding YOLOvVS5 models can also be improved referring to the YOLOv5s-TM
improvement method to meet the actual requirements.

Table 8 The detection performance of Yolo series models in the test process.

Model Size mAP Speed  FPS Weight file size
YOLOV3 640 0.893 75.5 21.93 470

YOLOvV5n 640 0.859 372 46.5 13.9

YOLOVS5s 640 0.865 51.8 57.14 54

YOLOvV5Sm 640 0.878 54.5 38.46 159

YOLOvVSI 640 0.882  71.7 26.95 352

YOLOvS5x 640 0.890 180.6  6.63 663

YOLOv5s MT 640 0.976 52.9 45.24 54
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3.1.5 Conclusions of this section

Although the PFAL is still questioned because of its high construction and
operation costs, and has not been widely recognized by people at present, it is also
expected due to its high controllable environment, wash-free ready-to-eat, easy
quality control and many others other advantages. Considering the utilization rate of
resources and space, dwarf tomatoes are most likely to be the first to be widely planted
in PFALs. However, because the dwarf tomato fruit is small, the light environment is
complex, the growth is dense, and the overlap occlusion is severe. Therefore, it is
challenging to detect tomato fruit in real-time and rapidly. Consequently, we take
YOLOVSs as the reference network. By improving and optimizing the BottlenckCSP
structure, adding attention mechanism, optimizing the anchor box setting algorithm
and changing the boxes regression loss function, an improved real-time detection and
counting method of dwarf tomato in PFALSs is proposed, namely YOLOvS5s MT, that
can provide technical support for harvesting robots and yield estimation in PFALs.
Training and ablation experiments were conducted on the enhanced Micro-Tom
dataset, and the performance was compared and analyzed with the six network models
of the YOLOvV3, YOLOv4, and YOLOVS series. The experimental results show that
the data-enhanced and improved YOLOvSs MT algorithm can extract the feature
information of the detection target more effectively, and the size of the input image is
set to 640x640 scale, which reduces the loss of small target information during
network down-sampling, and greatly improves in terms of speed and overall
performance. Compared with the existing network structure, the method effectively
improves the detection accuracy, speed and counting accuracy of small tomatoes that
can meet the detection accuracy and speed requirements of future PFALs harvesting
robots, as well as the counting accuracy requirements for dynamic yield prediction
and real-time yield information display.

In this paper, we only study the detection and recognition of a single category
of dwarf tomatoes in PFALSs, which is the basis for the realization of robot picking
and dynamic yield estimation. Nevertheless, in fact, the robot only needs to pick

mature tomatoes, which requires the harvesting robot to have the ability to distinguish
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tomatoes in different growth periods and classify them in fine-grained. Accordingly,

our future work goal will be based on this research: (1) to further expand and enhance
data sets to provide the perfect Micro-Tom data sets for Al applications. (2) the
algorithm is further enhanced to improve the detection accuracy of mature fruit, and
the harvesting robot model in the PFAL will be studied more closely. Finally, (3) will
deeply study to construct the yield dynamic estimation model, and to make production
management more precise and marketing and decision-making information updating
more time-sensitive.

3.2 CMRDF algorithm based on cucumber seedling and leaf segmentation
in RGB-D plant factory

Nondestructive detection and analysis of plant phenotypes using computer
vision technology is the basis for online dynamic plant monitoring, production
guidance, disease early warning, yield prediction, and other related applications.
Effective health management for cucumber seedlings is crucial for promoting their
vigorous growth, which serves as the foundation for enhancing cucumber yield and
associated economic gains. Therefore, computer vision-based seedling and leaf
segmentation, plant height calculation, and leaf area calculation have become key
technologies for seedling monitoring and management. This paper introduces a novel
semantic segmentation algorithm, namely RGB-D Cross-Modal Fusion (RDCMF),
for cucumber seedlings and leaves. The proposed algorithm is based on the cross-
modal fusion of RGB-D images. The algorithm employs a cross-modal component to
extract features from both RGB images and depth maps (D-modal) simultaneously
while also executing reciprocal rectification of these features. By using an attention
mechanism, the depth map and RGB image features are fused, thus maintaining the
integrity of the channel features as much as possible. In addition, the paper proposes
a depth image filtering algorithm that aims to improve the acquisition capability of
depth maps under complex lighting conditions in artificial lighting factories. The
results of the experiment indicate that the proposed model attains a mloU (Mean
Intersection over Union) value of 93.4% and a PA (Pixel Accuracy) value of 93%

when trained and calibrated on the same dataset using the algorithm. In comparison
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to the model that does not utilize the depth map, there is a 15.5% improvement in the

PA. Comparing to other prevalent RGB and RGBD segmentation algorithms, this
model attains the highest level of segmentation accuracy for cucumber seedlings. The
proposed model uses RGB-D sensors for segmentation of cucumber seedlings and
leaves, and the segmentation results exhibit a remarkable degree of accuracy and
performance. The model has promising applications in various areas, including plant
modeling and accurate detection of agricultural robots.

3.2.1 Introduction of this section

Plant factories are considered one of the most promising forms of production
in urban agriculture (Wang et al., 2023a) and are an advanced form of facility
agriculture (Kozai et al., 2020; Saito and Goto, 2023; Wang et al., 2022b). It requires
a high degree of mechanization, automation, informationization, and intelligence and
represents the highest level of modern agriculture (Saranya et al., 2023). The
application of robotics, artificial intelligence, and nondestructive detection
technology in agriculture is expected to significantly enhance the intelligent
development of plant factories (Karadag and Kilig, 2023; Milella et al., 2019; Wang
et al., 2022a). Recent research has shifted its attention towards the utilization of deep
learning models and algorithms for real-time detection and counting of tomato fruits
in complex light environments [8], lightweight detection algorithms for robotic
picking (Wang et al., 2023b), as well as plant phenotypic segmentation methods. This
has become a popular topic and development direction for research on plant factory
intelligence.

Semantic segmentation is one of the important techniques in the field of
computer vision, aiming at classifying each pixel in an image and distinguishing the
categories of different objects. This technology is currently widely applied in the
fields of robot vision(Joki’c et al., 2021), autonomous driving(Feng et al., 2020),
intelligent medical image analysis(Medley and Nascimento, 2021), geographic
information analysis systems(Song et al., 2023), and plant growth monitoring(Grimm
et al., 2019). The fundamental aspects of life and agricultural sciences involve the

acquisition, identification, and analysis of various plant characteristics and



151
phenotypes. Plant phenotypes are determined by the interaction of genes and the

environment. However, conventional techniques for measuring plant phenotype
manually are beset by several issues, including low efficacy, subjective evaluation,
significant measurement inaccuracies, and potential interference with normal growth.
Moreover, these methods are ill-suited for analyzing the complete growth cycle of
plants. Hence, the segmentation of cucumber seedlings and detection of their
phenotype hold significant importance in attaining growth monitoring and intelligent
management of plant factories, thereby necessitating relevant research.

As a powerful deep learning model, convolutional neural networks (CNN) have
been widely used in the field of computer vision and have been applied in various
industries (Kromp et al., 2021; Pan et al., 2021; Shoshan et al., 2021) and achieved
significant results (Akilan et al., 2020; Liao and Guo, 2021; Mao et al., 2021;
Xiaolong Wang et al., 2021). The emergence of ViT(Dosovitskiy et al., 2020) has
further improved the performance of tasks such as semantic segmentation. Adopting
an encoder-decoder structure, it can process different sizes of input images adaptively
and output the segmentation result with the same size as the input image. In the field
of agricultural intelligence, a series of plant segmentation studies based on full-
convolution neural networks (Marset et al., 2021; Ott and Lautenschlager, 2021; C.
Wang et al., 2021) have significantly contributed to the development of this field.
Meanwhile, the introduction of depth cameras has facilitated the acquisition of depth
images that correspond to color images. Each pixel value in the depth image
represents the distance from that pixel point to the camera plane, which can provide
additional depth information for the semantic segmentation task to improve
segmentation accuracy (Zhou et al., 2021). The utilization of depth information can
aid in the improved differentiation of adjacent objects with comparable appearances
in a color image.

Aiming at the problems of low accuracy of pure image detection, high
application threshold due to the large network size of CNN convolutional networks,
and neglect of spatial location information due to separate extraction of depth map

and RGB image features, a new cucumber seedling segmentation algorithm is
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proposed in this paper. The algorithm employs the depth map and RGB image

acquired based on the RGB-D sensor, uses the depth rectification algorithm to obtain
a high-quality depth map in complex lighting environments, and utilizes cross-
channel fusion technology to process the depth map and RGB image features. Tested
on the constructed dataset, the proposed algorithm model in this paper achieves a PA
of 93% and an IoU of 93.4%. The algorithm can be used for fine segmentation of
cucumber seedlings, phenotypic measurement modeling, and precision agriculture
applications.

Our contributions can be summarized as follows:

- A model and algorithm for segmenting cucumber seedlings and leaf instances
based on RGB-D image cross-modal fusion (RDCMF, RGB-D Cross-Modal Fusion)
are proposed. The algorithm improves the accuracy and robustness of the
segmentation while ensuring the lightweightness of the model. We have applied the
algorithm to an intelligent monitoring system for crop growth in artificial light plant
factories and achieved remarkable results.

- A depth rectification algorithm is proposed. Through the fusion of multiple
depth images and the integration of their gradient, the challenges posed by the
complex lighting conditions in artificial light plant factories are effectively addressed,
leading to the attainment of consistent and excellent depth image acquisition.

- A module named Cross-Depth Feature Rectification Module (CD-FRM) is
designed and proposed. By combining the depth image to calibrate the RGB image
features, a pair of rectified feature pairs are obtained, which can enhance the feature
extraction capability and improve the precision and robustness of the model.

- Using the cross-attention mechanism, a Feature Fusion Module (FFM) is
designed, which can realize long-distance context exchange and enhance the features
in the two modes. The rectified feature pairs are mixed by deploying FFM to segment
cucumber seedlings and leaves, which effectively improves the segmentation
accuracy.

3.2.2 Methods and models

3.2.2.1 Image data acquisition
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The cucumber seedling RGBD dataset used in this paper was collected from

the Laboratory of Artificial Light Plant Factory, Henan University of Science and
Technology, Xinxiang, China. Thanks to the plant factory ACE, cucumber plants will
no longer be affected by the climate of the region. 6 batches of cucumber seedlings
were grown between June 2022 and February 2023, with approximately 100 seedlings
in each batch, and the data were collected during the seedling stage of the cucumber
plants. Cucumber “Jin You No.1” was chosen for the experiment, and the planting
experiment confirmed that this variety is suitable for planting under artificial light and
hydroponic environment. Cucumber plants are planted on hydroponic seedling trays
and grown using full artificial light hydroponics, where the ambient temperature,
humidity, nutrient solution, and photoperiod are automatically adjusted as the plants
grow.

The planting experimental platform used in this research is shown in Fig. 43,
the platform was acquired by a camera and handheld camera fixed above the planter.
The dataset consists of RGB images, depth map and GT, where the RGB images and
depth map are used as input extraction features for network training, and GT is used
to supervise the convergence of model weights. The RGB image and depth map are
acquired by the program-controlled depth camera Intel RealSense D455 at regular
intervals and saved as a 1280x720 pixel three-channel color and 8-bit depth map with
depth filtering calibration correspondence. In addition, high-definition RGB images
of up to 6,000x4,000 pixels can be acquired by shooting with a Canon 80D DSLR
camera fixed directly above to improve the model’s expressiveness. In addition, to
increase the diversity of the dataset, RGB-D images and high-definition RGB images
of the tilt angle were also acquired periodically above the diagonal of the nursery tray.
The data from the raw data were processed to acquire a total of 500 raw RGB-D

images and 300 RGB images.
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Fig. 43 Dataset augmentation.

3.2.2.2 Augmentation and Label

In order to increase the number of samples in the dataset and improve the
generalization capability of the model, this paper uses image processing to augment
the dataset in order to simulate the situations that may be encountered in real-life
scenarios. Image processing is performed using OpenCV library functions, with one
or more of the following methods chosen at random: 1) image rotation; 2) scale
scaling; 3) brightness adjustment; 4) filter addition (red or blue); 5) blurring or
sharpening; 6) adding noise. When RGB images are rotated, they are mapped to the
depth map at the same time, but image brightness, filters, blurs, or noise do not
correspond to the depth map. The data augmentation method for the depth map is to
select a random portion of the image and perform the same zoom operation on the
RGB image and the depth map. Also, the values are scaled down appropriately on the
depth map to augment the number of close samples in the dataset. The principle of
the data augmentation method is to crop the plants with a small area (crop area less
than 30%) on both RGB images and depth maps, and discard the augmented images
if the crop area is too large. A demonstration of the image enhancement algorithm

used is shown in Fig. 44.
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Fig. 44 Datasets augmentation. The three lines are the RGB image, depth map

visualization, and GT; the first column is the original image, followed by reduction,
mirroring, rotation, displacement, crop enlargement, rotation enlargement, blur,
respectively.

Mark cucumber seedling instances with labelme software on RGB-D images

acquired on RGB images, as shown in Fig. 45.

Fig. 45 Label result.

The labeled dataset consisted of 1260 sheets, which were randomly divided into
a training set and a calibration set according to the ratio of 8:2, with 1008 sheets in
the training set and 252 sheets in the calibration set, of which 3356 cucumber plant
instances were labeled in the training set and 834 cucumber plant instances in the
calibration set. The constructed dataset and the distribution of cucumber cotyledons
and needle examples are shown in Table 9.

Table 9 The dataset used for segmentation model training.

Sets Number of Number of Number of
Images needles cotyledons
train eight hundred 2563 2356
validation 200 434 2356
total 1000 2356 2356
3.2.2.3 Validation

In order to verify the effectiveness of the model, a general verification method
is used to verify the training results. In addition to the Precision, Recall, AP, and F1
metrics used in target detection, a computational approach to validate IOU and PA
(Pixel Accuracy) metrics was used to evaluate segmentation performance and

accuracy. IOU is an important indicator for evaluating the segmentation accuracy,
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which can reflect the accuracy of the prediction result. Its calculation method is shown

as Formula 3-2-1 to 3-2-5. PA is an important indicator of pixel-level accuracy,

reflecting the proportion of correctly classified pixels to the total.
TP

Precision = (3-2-1)
TP+FP

Recall =—— (3-2-2)
TP+FN

F1 =2+ Precision*Recall (3_2_3)

Precision+Recall

10U = GT APrediction (3_2_4)

GTUPrediction

PA =2 (3-2-5)

"~ TP+FP

Pixel indicate correctly predict the number of pixels to be segmented or the
number of the entire image. TP, FP, FN represent true positive, false positive, and
false negative, respectively; AP is the cucumber precision of pixels segmentation.

3.2.3 Related Work

3.2.3.1 2D Segmentation

D Deep learning models, such as the R-CNN series (Girshick et al., 2014), SSD
(Liu et al., 2016), and YOLO (Redmon et al., 2016), have been widely used in the
field of image detection based on CNN technology and have achieved outstanding
results. Kaiming et al. (He et al., 2018) proposed the Mask RCNN model based on
the Faster RCNN structure (Ren et al., 2017) by adding a target mask and successfully
implementing instance segmentation, which laid the foundation for new
developments in deep learning in the field of image target segmentation. Mask RCNN
uses Region Proposal Net (RPN) to identify object candidates in the image and further
expands the network by adding an FCN branch to predict the segmentation mask of
each target object, as shown in the Fig. 46. Experimental results show that Mask
RCNN has high efficiency and precision in instance segmentation, and has been
applied in many fields.

In summary, Mask RCNN is a powerful and flexible object detection and
instance segmentation network structure, but it needs high computational and storage

resources and requires a large amount of image data for training to obtain high
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accuracy. In addition, the segmentation accuracy is affected when there is severe
occlusion, overlap, or similar color and texture of the target. In applications that need
higher segmentation speed, accuracy, and robustness, such as automatic driving, real-
time robot operation, and high-precision modeling, the application of Mask RCNN
will be greatly limited. In order to address these issues, this paper uses a 3D vision
sensor, multi-modal image fusion, and a feature rectification algorithm, aiming to
preserve the channel features as much as possible to improve the segmentation

performance.

Fig. 46 Framwork of MaskRCNN.

3.2.3.2 RGB-D Segmentation

The RGBD vision sensor is a sensor that obtains both an RGB image and a
depth image at the same time, in which the depth image contains spatial information
and the overlapped targets in the RGB image can be distinguished by a three-
dimensional point cloud, thereby improving the accuracy of image segmentation. In
related research, Lafantasie (Lafantasie, 2016) fuses depth images into CNNs and
extracts depth information and color information at the same time, which improves
the accuracy of semantic segmentation. Lin et al. (Lin et al., 2019) used depth images
in an SCN network to extract geometric relationships between objects to improve the
accuracy of image segmentation. Chen et al. (Chen et al., 2021) proposed a spatial
information-guided convolution network. The fusion of depth images does not
increase the computational cost and greatly improves the ability to perceive geometric
shapes. Zhang et al. (Zhang et al., 2021) proposed a Non-local Aggregation Network
with multimodal non-local aggregation modules that can better segment images using
the non-local context of RGB-D features. The RGB*D method proposed by Cao et al.
(Cao et al., 2021) used the multiplication method to fuse the RGB information and
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the depth information in the early stages, and then the existing RGB segmentation

network could be directly used to simply and effectively link the RGB and RGB-D
semantic segmentation.

Compared with the 2D segmentation algorithm, the RGBD segmentation
algorithm can provide additional spatial location information by adding depth map,
so that the target segmentation on the image with depth information can increase the
network expression ability and the degree of model convergence. 3DGNN proposed
by Xiaojuan et al. (Xiaojuan et al., 2017) is an extension of Graph-based Neural
Network (GNN) and can effectively process 3D data, such as 3D point cloud, 3D
mesh, 3D voxel. The 3DGNN model is a segmentation and detection model that
utilizes point cloud data. Its object detection and segmentation capabilities have
demonstrated impressive performance. In contrast to conventional two-dimensional
convolution, the 3DGNN employs node and edge information, while also considering
the spatial arrangement of nodes in three-dimensional space, as depicted in Fig. 47.
However, GNN-based networks necessitate the computation of 3D location
relationships, which incurs a substantial computational burden, thereby constraining
their broad applicability. Therefore, this paper presents a novel network structure that
uses attention mechanisms and Transformer model to enhance network segmentation

performance and reduce network size, thereby enabling more efficient target

segmentation.
P\
CNN GNN
In Euclidean Space In Non-Euclidean Space
Fig. 47 Compare CNN with GNN.
3.2.3.3 Attention

With the successful implementation of the Encoder-Decoder model, the
attention mechanism-based approach has been increasingly utilized in various fields,

including Object Detection and Retrieval (ODR) (Sirmorya et al., 2022). In contrast
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to the process of coding and decoding words in the language model, image detection

employs a spatial attention mechanism and a channel attention mechanism (Cirstea
and Likforman-Sulem, 2016; Hu et al., 2018). The traditional attention mechanism
model calculates the similarity of each element in the input sequence to the query
element, and then uses these similarities as weights to weight and sum the input
sequence to obtain a contextual representation associated with the query element. The
multi-head attention mechanism further decomposes the attention mechanism
calculation into a plurality of head, each of which learns a different weight matrix for
calculating the similarity and the weighted sum. The results obtained from multiple
heads are then stitched together, as shown in Fig. 48. This can increase the attention
of the model to different features in the input sequence and improve its modeling

ability for complex sequence data (Xiang Wang et al., 2021).
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Fig. 48 Illustrate multiple head attention.

Attention-based models, particularly those utilizing multi-headed attention
mechanisms as employed in this study, exhibit superior capacity for processing long
sequence data, enhancing model generalization, enabling different feature space focus,
and facilitating multi-task learning and application (W. Wang et al., 2021). The multi-
head attention mechanism reduces the computation and storage cost by decomposing
the input vector into multiple heads, so that each head pays attention to a different
position. In addition, the multi-head attention mechanism can more easily capture
important features in data and more easily adapt to new data distribution, further
improving the generalization ability of the model. For the cucumber plant

segmentation in this paper, the input image and depth map have more features,
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particularly the blade edge and texture, and the use of multi-head attention mechanism

can make the model capture more features for detection and segmentation, thus
improving the accuracy (Li et al., 2021).

3.234ViT

Transformer is a widely used approach to modeling sequences that was initially
employed in the field of natural language processing. Compared with traditional
recurrent neural network (RNN) and long short term memory network (LSTM),
Transformer model uses self-attention mechanism and full connection layer to process
sequence data, thus avoiding the impact of sequence length and gradient
disappearance. The model is mainly composed of encoder and decoder, as shown in
Fig. 49. The encoder consists of multiple identical layers stacked on top of each other;
each layer contains a multi-headed attention mechanism and a fully connected layer.
The decoder consists of multiple identical layers stacked on top of each other, and
each layer contains a multi-headed attention mechanism, a fully connected layer, and
a multi-headed attention mechanism. Between the encoder and decoder, there is an
embedding layer for converting the input and output sequences into a vector

representation (Strudel et al., 2021).
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Fig. 49 Illustrate Vision in Transformer.

The Transformer model, based on a self-attention mechanism and fully
connected layer, is not constrained by sequence length and gradient disappearance
and thus has location- and context-specific awareness, which has made it successful
in areas such as natural language processing. However, unlike text data, image data
processed by computer vision can hardly find the division units of sequences

(Dosovitskiy et al., 2020). Vision in Transformer (ViT) is a computer vision model
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based on Transformer that divides the image into a sequence of multiple small blocks
and contains their position codes (Strudel et al., 2021), as shown in the Fig. 50. These
blocks undergo feature transformation through the linear projection layer and are then
input into multiple Transformer encoders. The encoder contains multiple self-
attention heads and fully connected layers, which can capture the relationship between
different positions and generate a vector. VIT passes the encoder output features into
the decoding network together with the segmentation mask and transforms the
decoder output feature map into the segmentation result through the output layer. Thus,
VIT brings a new approach to the field of computer vision by dividing images into

sequences and performing tasks such as detection and segmentation.
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Fig. 50 Illustrate Vision in Transformer.

3.2.4 Improved Cross Model Depth Network

3.2.4.1 Framework Overview

This section introduces the RDCMF framework, a semantic segmentation
model framework designed for the purpose of segmentation of cucumber seedlings.
The framework mainly utilizes the encoder and decoder segmentation architecture of
the ViT model, and is improved based on the CMX (Cross-Modal Fusion for RGB-X
Semantic Segmentation with Transformers) model to adapt to the complex lighting
environment of artificial light plant factories, as shown in Fig. 51. The model uses
two parallel backbone networks to extract RGB and depth map features
simultaneously, rectifies them by CD-FRM module and fuses the features by FFM,
and finally outputs the fused features for segmentation (Liu et al., 2022).

The proposed network has two innovative points. On the one hand, it fully
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combines the structural advantages of CNN and transformer models. On the other
hand, it supports two parallel backbone networks to mutually rectify and extract
features by using depth maps and RGB. The backbone network adopts the MiT model
for feature extraction and the CD-FRM module for cross-depth rectification feature
processing (Xie et al., 2021). The backbone network was composed of four layers,
with the input features of each layer being respectively (1/4, 1/8, 1/16, 1/32) of the
original image resolution. The MiT block in each layer and the CD-FRM module
jointly extract and rectify the features of the depth map and the RGB map and input
the rectified features into the FFM module for feature fusion. The final output features

are sent to the decoder for segmentation.
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Fig. 51 Framework overview of RDCMF.

The MiT block is a visual Transformer structure, as shown in Fig. 52. It
includes Efficient Self-Attention attention module for feature extraction, Mix-FFN
for providing location information, N models connected and the number of N in each
layer can be flexibly chosen according to the complexity of the task (Shen et al.2020;
Xie et al., 2021). Finally, the Overlap Patch Merging module is used to complete the
discontinuous features of the output so that the segmented cucumber plants are
continuous (Patel et al., 2022). As shown in formula[formAttention], in the original
multi-head self-attention module, Q, K, and V of each head have the same dimension
NxC, where N=HxW is the length of the sequence. The MiT backbone network
adopted a sequence reduction method to reduce the complexity of the model (W.
Wang et al., 2021), where the self-attention estimation was performed based on these

reduced sequence lengths.
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Attention(Q,K,V) = Softmax %4
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Based on the design of the MiT backbone network, MiX-FFN is used as an
alternative to position coding, using smaller convolutional operations to provide
location information, thus improving the robustness of the model to the resolution of

the input image. The operation can be represented as:

X,y = MLP (GELU (Convgxg(MLP(xin)))) + x;
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Fig. 52 MiT module schematic.

3.2.4.2 CD-FRM

The proposed CD-FRM (Cross-Depth Feature Rectification Module) is a
modern cross-depth feature rectification module, as shown in Fig. 53. The module
can be used to effectively rectify noise and uncertainty interference in depth maps and
RGB images, thus improving performance in complex lighting environments of
artificial light plant factories. This module is an improvement on CM-FRM and is
optimized for the rectification of depth features. The proposed CD-FRM module
contains feature rectification in two dimensions, channel-wise and spatial-wise, and
the two interact to complete the rectification of the overall feature so as to achieve a
better rectification effect.

First, depth feature Depth inand RGB feature RGB _in € RMHX W X C)are
obtained from two parallel backbone networks. Then, the average pooling and
maximum pooling operations are used to extract features, and all result vectors are
stitched into one vector Y € R"4C. Next, a Multilayer Perceptron (MLP) layer with a
sigmoid activation function is used to generate channel feature rectification weights

WACERMC. These weights are divided into depth and RGB channel weights
W_Depth"C and W_RGB”C. The channel rectification formula is as follows:
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Fig. 53 Framework overview of CD-FRM .

3.24.3 FFM

A module used to fuse RGB and Depth features, as shown in Fig. 54. The
features extracted by CD-FRM after rectification as FFM input in two synchronous
backbone networks, and FFM outputs the fused features to the decoder for prediction.
In FFM, two cross-channel attention mechanisms are added to the depth features and
RGB features respectively in order to allow further fusion of the depth map and RGB

features. This cross-channel attention mechanism decodes the input vector into Query

Q, Key K, and Value V.
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Fig. 54 Framework overview of FFM.
3.2.4.4 Depth map rectification algorithm

The depth Intel Realsense camera used in this article is similar to other

commercially available depth sensors in that the imaging principle is modeling using



165

infrared structured light. Due to the influence of ambient light, the camera will be
affected by the ambient light in addition to its own infrared-excited structured light.
In artificial light plant factories, red, blue, and white light are extensively used as the
light source for plant growth in order to promote photosynthesis in the plants and are
located close above the plants. In the factories, high-power LED light sources are used
to obtain sufficient light intensity. However, the light source effects the data
acquisition of the depth camera, resulting in a depth image with a high level of noise,
which severely limits the model’s ability to segment.

For complex artificial light plant factory environments, this paper proposes an
algorithm for noise reduction and depth rectification. As shown in Fig. 55, three depth
images are acquired alongside RGB images, and then our rectification algorithm
calculates a depth image with less noise.

Since there are both characteristic plane and cucumber plants in the input image,
they need to be processed separately. First, the plane is fitted, and then the plants
located on the plane are separated. Then the features are extracted and matched from
multiple input depth maps, and then the plane and the plants are filtered respectively.
Finally, all the processed depth maps are fused into a rectified depth map.

= e
@
) =
o 7
= 5 U & ‘
()] ) n—)
sbimit ® e
= = @
- > @
@ & @ = .
g | | g - 1 ]
c g = c Raw rgb
= = w
o s — 5
=]z 3
5} D
2 =k Py & ©
o) > Q [\
S « =3 (=1 A
5 9
@ o U
> o — LD
@ I
@ @
S =1
5 5
Q@ @
| | ] | | ] |
[Raw depth input| | Pre-poscessing | | Plane and plants rectification | | Depth output |

Fig. 55 Illustration of depth rectification algorithms. Three depth images are
input, and their acquisition times are 1 second apart. By colorizing gray-scale images

with a single depth value, these depth images are made convenient to view. In addition,
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the original RGB image was taken against a white background and displayed in red

under artificial light. In the preprocessing stage, the salient features in the three depth
images are extracted and matched using a method similar to point cloud processing.

In the artificial light plant factory laboratory, depth measurements during plant
growth are performed by fixing the plants on a flat planting disk. First, the planting
plane of the plant is fitted to calculate the depth mean[formDepthS].

N

1 AV

S = mZ(xl—X)
=1

The standard deviation is s, is the number of samples is N, is the sample data is

X_1, 1s the sample mean is X
threshold = mean + k * std ev

mean is the mean of the heights of all points in a given voxel, std d ev is the
standard deviation of the heights of all points in a given voxel, and k is the standard
deviation multiplier. If the difference between the height of a point and the mean value
is greater than threshold, the point is considered an outlier. Usually, when k is taken
as 2, most of the noise and outliers can be effectively removed; when k is taken as 3,
the noise and outliers will be removed more strictly, but some useful information may
be lost at the same time.

In point cloud data processing, fitting surface is an important step, whose
purpose is to solve the mean and standard deviation of point cloud data in order to
eliminate outliers. Fitting surfaces is usually performed using least squares plane
fitting method. The method assumes that the point cloud data are distributed on a
plane, and solves the parameters of the plane by minimizing the square of the distance
from each point to the plane. Specifically, suppose the Formula 3-2-6 of the plane is:

ax+by+cz+d=0 (3-2-6)

The parameters of the plane can be solved by minimizing the following

Formula 3-2-7:
minX (ax; + by; + cz; + d)? (3-2-7)

(xi,yi, 2;)is a point in the point cloud data.
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Expanding the above equation, we can get the following linear equations 3-2-

8:
xiza + xiyl-b + XiZ;C + xl-d = —XiZ;
xyia+yib+yzic+yd =-yz (3-2-8)
x;z;a + vyiz;b + zfc + z;d = —z}

xia+yb+zic+nd =0

n is the number of points in the point cloud data.

3.2.5 Results and Analyse

To calibrate the segmentation performance of the model on cucumber seedlings,
the same pre-assigned training and calibration sets were used to participate in training
and calibration, and the model was evaluated using the same calibration method.

3.2.5.1 Experimental environment and Training Methods

All experiments were performed on the same workstation platform, which is
equipped with hardware such as Intel 19-10920X CPU, NVIDIA RTX 3090 with 24G
memory GPU, and 128G RAM, and uses software environments such as Ubunut18.04,
CUDA11, CUDNNS.1, PyTorchl.11, and Python3.7. The dataset is randomly divided
into training and calibration sets according to the scale, and trained on each model. In
view of the differences between the models, three groups of experiments are designed,
which are CMDFR, CNDFR without depth, and mainstream segmentation methods.
Each model is trained to converge, that is, after 50 rounds of calibration, the results

of the models did not improve. The trained model is evaluated on the test set.

train loss
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Fig. 56 CMFDR model was used to train loss curve.
Experimental training CMFDR process is as shown in Fig. 56, where the loss

curve gradually converges with the increase of the number of training rounds. Among
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them, the RGBD model achieves convergence at around 50 rounds and converges
well. RGB did not achieve convergence until 100 rounds, and the degree of
convergence was low.

3.2.5.2 Segmentation results

The cucumber seedling segmentation algorithm across model depth proposed
in this experiment is based on depth map and RGB image extraction features. In order
to verify the detection and segmentation capabilities of the model, the model CMFDR,
which was trained and converged on the training set, was selected, and the backbone
network SegFormer-B2 was selected. The model parameter quantity was
67.6GFLOPs, and the model file size was 94.3Mb. The environment and parameters
of the test set were the same as those of the training set. There were 78 test set images
and 234 plant instances. The test results were 93% PA, 93.4% IoU, and the mean time
to predict images was 78 ms. As shown in Table 10, the plant detection and
segmentation performance of the model proposed in this paper on the test set is
demonstrated under the complex lighting environment of the plant factory.

Table 10 The plant detection and segmentation performance of the model

proposed.

Model Backbone PA(%) IoU(%) FLOPs(%) Weight Size(%)
CMFDR SegFormer-B0 83.4 79.1 10.1G 14.1Mb
CMFDR SegFormer-B1 85.2 83.7 37.5G 52.1Mb
CMFDR SegFormer-B2 90.8 90.3 67.6G 94.3Mb
CMFDR SegFormer-B4 89.5 923 122.3G 170Mb
CMFDR SegFormer-B5 93.0 93.4 167.8G 234Mb

Through the observation of the experimental data, we can find that with the
increase in the size of the Backbone, the detection and segmentation performance of
the model are further enhanced. This suggests that the model exhibits a degree of
generality and can be enhanced in scale to enhance its efficacy in handling a wider
range of classification tasks or more refined classification tasks. In addition, it is
observed from the IOU column of the detection box that the model has achieved good

results on a small scale. The performance improvement is very limited as the network
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size increases, indicating that the majority of weight parameters of the network model

contribute to the target segmentation, thereby enhancing the model’s segmentation
precision. Using CMFDR networks of different sizes to segment an example image
can show that the segmentation results of larger networks are more accurate and can
better fit the plants, as shown in the Fig. 57. Accurate plant segmentation is of great
significance for precision agriculture, which can be used for seedling platforms,
accurate modeling, plant genetic engineering experiments, etc. This suggests that the
proposed network can be applied to more fine plant segmentation tasks now and in

the future as the network size increases.

 Seoremer-50 o Seoromerz SerormerB

Fig. 57 Comparison of segmentation results. When CMFDR uses different size
backbone networks, A, B, and C indicate that the CMFDR model is effective in
predicting the same plant except when the SegFormer-B0, SegFormer-B2, and
SegFormer-B4 backbone networks are used to visualize the same plant, respectively.
The red and blue filters are the prediction results, and the white circle is added to
emphasize the places with poor effect.

3.2.5.3 Effect of contrast depth map on results

In order to explore the impact of depth images on model detection and
segmentation performance, this study further tested the model’s performance in the
absence of depth information, the results are shown in Table 11. Since the adopted
cross-channel rectification algorithm needs to use the depth channel information to
extract the features of the RGB images, if pure white or pure black is used to replace
the depth image, the feature extraction process of the model may be misled, and thus
the performance of the model is degraded. Therefore, in the test model, this study uses

the gray image of the RGB image and the corresponding RGB image as the depth

image input, where the gray image does not contain any additional features. In the
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experiment, SegFormer-B4 was selected as the backbone network, and its model scale
was 78 GFLOPs. The experimental results show that each test index using depth image
is higher than that without depth image. In particular, the difference between the two
is up to 20% in terms of segmentation indicators. Therefore, the depth image acquired
based on the RGBD sensor has a large improvement potential for the plant
segmentation task in complex scenes.

Table 11 The test results of improved models using and not using depth images.

Model Input PA(%) IoU(%)
CMFDR-RGB RGB 70.4 69.1
CMFDR-RGBD RGBD 93.0 93.4

3.2.6 Conclusions of this section

In this paper, a CMFDR cucumber segmentation algorithm is proposed. The
core idea is to use multimodal ideas to acquire depth maps and RGB images
simultaneously and use two parallel backbone networks to rectify and extract these
features. Specifically, this paper constructs a network using the idea of ViT
segmentation and uses an efficient feature rectification and feature fusion module to
introduce the fused features into the cross-scale decoder for segmentation and
detection. In addition, a depth rectification algorithm is proposed to remedy the
influence of the complex illumination environment on the depth sensor by rectifying
the influence of complementary light on structured light. Finally, this paper also puts
forward the backbone network of different scales to meet the needs of different tasks,
so as to further guide agricultural production, and create economic and agricultural
value.

The experimental results show that the CMFDR cucumber segmentation
algorithm proposed in this paper performs better than the algorithm using only RGB
segmentation, especially when dealing with plant segmentation in complex scenes.
Therefore, the algorithm proposed in this paper can be used for cucumber plant
phenotypic platforms, yield estimation, accurate modeling and other tasks and

provides important technical support and economic value for agricultural production.
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SECTION 4. BASIC RESEARCH RELATED TO THE COUPLING AND

PRECISE REGULATION OF MULTIPLE ENVIRONMENTAL FACTORS
IN A PLANT FACTORY WITH ARTIFICIAL LIGHTING

4.1 Illumination screening And uniformity simulation of hydroponic
lettuce in artificial light plant factory

4.1.1 Illumination properties and artificial light plant factories

In recent years, the ALPF (Yang, 2014; Liu et al., 2014; He, 2018; Kozai, 2019;
Kozai et al., 2020; Huebbers et al., 2020) have become the mainstream production
mode of urban productive agriculture, as the plant growth environment is highly
controllable and not limited by natural climate, geographical location, land resources,
and other conditions (Lee, 2018). In addition, the agricultural products of plant
factories have the advantages of pollution-free, pesticide residue free, washable and
ready to eat, green, healthy and environmentally friendly, which are expected and
loved by people (Huang, 2019; Ares, 2021). ALPF is the highest form of facility
agriculture development and a new agricultural production method for the
development of intensive and efficient modern agriculture. It is more suitable for the
development of industrialization and commercial plant production in urban areas and
has good development prospects (Orsini et al., 2020). Light is an essential energy
substance for plant photosynthesis, growth and development, morphological
construction, and material consumption. The light conditions required by different
types of plants at different stages of growth vary greatly. Therefore, focusing on
optimal lighting conditions for specific plants, including light quality, light intensity,
light cycle, and light production form, has become a hot research topic in artificial
light plant factories. Light emitting diodes (LEDs) have the advantages of low voltage,
low power consumption, safety and energy conservation, easy control, long service
life, small size, light weight, and wide working environment. They have become a
common source of light for plant lighting in greenhouses, artificial climate rooms and
other areas. With the rise and development of ALPF, they have also become the
mainstream light source for ALPF applications (Tsuruyama et al., 2018; Prikupets et

al., 2019; Wei et al., 2020; Paucek et al., 2020; Jiang et al., 2020).
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Lettuce is widely grown in fields and greenhouses in China and many countries
around the world. It is beloved for its crisp, thick leaves, good fresh taste, easy
digestion, green health and high nutritional value. In addition, its low growing
environment requirements, easy survival, rapid growth, lush foliage, compact growth,
low plant height, and short growth cycle make it well suited for cultivation in PFALs.
Philips pioneered the concept of plant lighting formulations and has played an
important guiding role in the design, development and production of plant growth
lamps due to the different lighting requirements of specific plants during a given
growth phase. The lighting formula refers to the lighting conditions required by crops
in a specific growth environment during a certain growth stage (Wang et al., 2015;
Liuetal., 2017; Marondedze et al., 2018). A lighting formula usually consists of three
aspects and eight parts: (1) The first aspect is the lighting characteristics, namely
lighting quality, lighting intensity, light cycle, light source installation position,
number of lamps and LED beads, and lighting uniformity. (2) Environmental factors,
1.e. other environmental parameters based on the light formula, such as temperature,
humidity, etc; (3) Light effects, such as energy-saving effects. All the above factors
are interdependent, interacting, interwoven, and coupled to each other. In addition,
coupled with the complex biological mechanisms of plants themselves, the study of
plant illumination formulas has become extremely complex.

LEDs belong to cold light sources, and the closer they are to plants, the stronger
the illumination and the higher the efficiency of light energy utilization (Wang et al.,
2004; Massa et al., 2008; Yang et al., 2011). Illuminance (E) refers to the amount of
light flux (¢) received by the illuminated surface of an object per unit area (S), and
the calculation method for illuminance is shown in equation (1). The illuminance of
LED lights varies with changes in power supply voltage and can be measured using
a spectrophotometer.

E=¢/S (1)

It is necessary to choose different numbers of red and blue LEDs to match and
combine for different plants, while taking into account the desired illumination and

uniformity of illumination. Different types of plants require different levels of light
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uniformity (Wu et al., 2009; Zhu et al., 2015). The illumination uniformity (U_0)

refers to the ratio of the minimum illuminance (E_min ) of the light receiving surface
to the average illuminance (E_ave ) within a certain irradiation area, which is
calculated as shown in equation (2). The value of illumination uniformity is (0,1),
and the closer the value is to 1, the more uniform the light the lettuce receives and the
better its overall growth condition.

U_0 = E_min/E_ave (2)

The growing process of ALPFs hydroponic lettuce is divided into three stages:
germination, seedling, and growth, and its growing period is typically around 30 - 50
days. The requirement for light during the budding stage is not high, so light
regulation is rarely carried out. The optimal composite ratio of red and blue light
during the seedling stage is 7:1, and the optimal composite ratio during the growth
stage is 6:1. The optimal lighting time for the seedling and growth stages is 16 hours.
In general, LED light beads are arranged in equal intervals, and the uniformity of
illumination varies greatly when different arrangements of light are used to illuminate
lettuce, which can affect the overall growth of lettuce.

With the deepening of ALPF research and the advancement of its
commercialization and industrialization, improving the automation and accuracy of
light environment regulation under artificial lighting conditions, maximizing the
promotion of high-quality and efficient plant growth, is an effective way to reduce
energy consumption, improve resource utilization efficiency, and lower production
costs (Saito et al., 2020; Yuan et al., 2021). In this study, different forms of LED
illumination and distribution are used to design illumination gradient experiments and
illumination uniformity computer simulation experiments. Experimental comparisons
and computer simulation methods were used to investigate the effect of different
illumination and LED arrangement forms on lettuce growth under ALPFs, with the
aim of providing a standard lighting scheme for artificially illuminated plants.

4.1.2 Illumination gradient experiment

4.1.2.1. Experiment site and test material

The laboratory is decorated with fully enclosed insulation and is designed to
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have no light transmission. The plant growth is illuminated by controllable red, blue,

and white LED lights. The growing room environment is controlled by a combination
of cabinet air conditioners, fresh air systems, humidifiers and other equipment,
intelligently controlled by centralized control software. The airflow and air volume
of the planting layer frame are controlled by a DC axial fan. The nutrient solution that
circulates in the hydroponic layer frame is intelligently regulated by a programmable
integrated water and fertilizer system. Experiments were conducted alternately
between early June 2021 and late December 2021. Multiple lettuce varieties were
used in the experiments, and all lettuce seeds were purchased from legitimate seed
companies with market licenses. All the experimental material was taken from
hydroponic lettuce grown in the laboratory. The experimental site and some main

experimental equipment are shown in Fig. 58.
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(2) (h)
Fig. 58 The ALPF laboratory and main experimental devices. (a) The ALPF

laboratory, (b) Hydroponic shelves, (¢c) Hydroponic Lettuce, (d) Integrated irrigation
system (e) Environmental regulation system, (f) Dehumidifier, (g) DC fan, (h) Light
Sensor.

4.1.2.2. Experiment environment

The experimental LED plant growth light was custom-developed by
ANCORGREEN, a specialist manufacturer from Anhui province. The light quality,
intensity and duration of an LED lamp can be set according to experimental
requirements and intelligently controlled by a program. The light quality is composed
of red, blue and white lights according to the set ratio, and the ratio of the three lights
can be precisely controlled by the program, as shown in Fig. 59 for some of the LED
lamps used in the experiment. When the plants are illuminated to simulate the daytime,
the indoor temperature of the laboratory is set at about 23 C and the CO,
concentration is set at about 800ppm. Moreover, when the plants are not illuminated

to simulate the night, the indoor temperature of the laboratory is set at about 18 C
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and the CO; concentration is set at about 400ppm. The humidity in the laboratory

setup was maintained between 70% and 80%. The DC fan, which regulates the flow
of air through the growing shelf, operates for 2 minutes at 10-minute intervals. The
nutrient solution in the planting layer shelves is continuously supplied for 5 minutes
at 30-minute intervals, in which the EC value is always maintained at 800 us/cm,
and the pH value is maintained at about 6.8. LED lamps are installed at the top of

each layer of the planting shelves, 28cm away from the lettuce growing canopy, and

the plant light time is set to 16 4/d.

e

i

(a) (b) (©)

Fig. 59 LED plant lighting lamps. (a) Matrix arrangement, (b) Triangular
arrangement, (c) Circular arrangement.

4.1.2.3. Experimental design

To investigate the effect of different light conditions on lettuce growth, 60
healthy lettuce seedlings were randomly selected, and 15 seedlings were subjected to
four sets of light conditions for the hydroponic experiment. [llumination levels are set
to 200, 300, 400, and 500umol/(m? - s), respectively, denoted as T1, T2, T3, and T4.
From the first day after transplantation, five plants were randomly selected at 5 p.m.
each day to measure and record the height, length and width of the outermost leaves
of the lettuce. When the lettuce is 50 days old, it is ripe and ready to be harvested.
Eight good growing plants were selected from each control group, and the fresh
weight of each plant was weighed and their average value calculated.

4.1.2.4. Results and analysis

After 50 days of hydroponic cultivation, the lettuce was harvested and the fresh
weight of individual plants was weighed, the results of which are recorded in Table

12. The lettuce growth and growth curves for different experimental groups are shown
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in Fig. 60 and Fig. 61, where Fig. 61a shows the average plant height growth curve,

Fig. 61b shows the average leaf length growth curve, and Fig. 61¢ shows the average
leaf width growth curve for lettuce.
Table 12 Average fresh weight of individual plant lettuces at harvest under

different illumination conditions.

[lluminance Fresh weight of individual plant* Average
fresh weight*
T1 112 126 115 109 128 117 119 120 118.25
T2 136 132 128 126 131 129 138 127 130.875
T3 168 163 162 169 158 160 159 153 161.5
T4 96 112 103 97 108 102 106 116 105

*illuminance unit: umol/(m? - s), Fresh weight: grams.

As can be seen from Table 12 and Fig. 60, the growth of hydroponic lettuce
under different illumination conditions is significantly different. For plant
morphology, each experimental group of lettuce grew brittle green hypertrophy, but
the number of lettuce leaves under 500 umol/(m? - s) light was significantly less
than that of the first three experimental groups. For biomass accumulation, compared
with the average fresh weight of single lettuce after hydroponic culture to 50 days,
the biological yield of single lettuce under 400 umol/(m? - s) illumination is the
highest, which is about 37% higher than that under 200 umol/(m? - s) illumination,
23.4% higher than that under 300 umol/(m? - s) illumination and 53.8% higher than
that under 500 umol/(m?-s) illumination. The results showed that the 400

umol/(m? - s) illumination was more suitable.

(a) (b) (c) (d)
Fig. 60 Growth of lettuce in each experimental group at harvesting. (a) T1, (b)
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T2, (c) T3, (d) T4.

As can be seen from Fig. 61, the plant height, leaf length and leaf width of
hydroponic lettuce show an upward trend as the lettuce growth time increases,
indicating that the illumination gradient setting is reasonable. For different growth
indexes, the growth of lettuce in each experimental group was T3 > T2 > T1 > T4.
The results showed that when the illuminance was set below 400 umol/(m? - s),
gradually increasing the illuminance could promote the growth of lettuce. When the
illuminance reached 400 umol/(m?-s), the growth of lettuce was inhibited by
increasing the illuminance. The reason may be that the high-illumination LED lamps
have high thermal power consumption and high heat, leading to water shortage in the
plant. It is also possible that the high intensity of the light caused some damage to the
plant's growing organs or some stress on physiological processes. The results also
showed that the 400 umol/(m? - s) illumination was more suitable for the growth of

hydroponic Lettuce in PFALs.
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Fig. 60 Growth of lettuce under different illumination. (a) Plant height growth
curve, (b) Leaf length growth curve, (c) Leaf width growth curve.

4.1.3 Simulation experiment of illumination uniformity

4.1.3.1 Experimental design

In general, led plant sources are arranged in arrays, triangles, and circles. In
order to study the illumination uniformity characteristics of LED light sources with
three arrangement modes, we use TracePro optical simulation system and three-
dimensional composition method of MATLAB software to simulate the illumination
uniformity, compare and analyze the advantages and disadvantages of the

illumination uniformity of the three arrangement modes, and provide theoretical
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guidance for the design of plant light sources and plant production using artificial
light sources.

(1) TracePro optical simulation experimental method

The TracePro optical simulation environment was systematically configured by
selecting 25 identical LED beads and sequentially arranging them into matrix,
triangular and circular forms, with the spacing set to 3 cm and the light source 28 cm
away from the lettuce. The simulation plots were derived by running the Tracepro
software after setting the remaining parameters, as seen Fig. 62.
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(a) (b) (c)
Fig. 61 Simulation results for the illumination distribution in different
permutation patterns. (a) Simulation results of matrix illuminance distribution, (b)
Simulation results of triangle illuminance distribution, (¢) Simulation results of
circular illuminance distribution.

(2) Matlab software simulation experimental method

Through the Matlab software system, a 3D map is constructed from the
collected illumination data to visually display the distribution of illumination
inhomogeneities. The test step was to attach LED light beads in the form of matrices,
triangles and circles spaced 3 cm apart on top of the growing layer shelf, with the
source 28 cm away from the coordinate paper. The specification of coordinate paper
is 100cm % 100cm, composed of small squares of 1cm x Icm. After preparation, the
illumination at each small square was measured successively with the illuminant
sensor, and the final summary data was constructed into a 3D map via Matlab software,

as shown in Fig. 63.
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Fig. 62 Matlab simulation of illuminance distribution in different arrangement

forms. (a) simulation of matrix arrangement, (b) simulation of triangle arrangement,
(c) simulation of circular arrangement.

4.1.3.2. Results and analysis

(1) Optical simulation results and analysis of TracePro software

As can be seen from Fig. 62, the three permutation modes all exhibit light
distribution features where the middle region of the light receiving surface is brighter
and the surrounding region gradually darkens. In particular, the overall illumination
of the LED sources arranged in the matrix is significantly better than that of the
triangular and circular arranged modes. The illumination uniformity index refers to
the uniformity of the illumination distribution. According to the simulation results,
the illumination uniformity of the matrix is 80%, as shown in Fig. 62a. The
illumination uniformity of the triangular form is 71%, as shown in Fig. 62b. The
circular pattern has a uniform illumination of 79%, as shown in Fig. 62¢. Using
TracePro computer simulations, it can be shown that the matrix LED source
arrangement has the best illumination uniformity.

(2) Matlab 3D simulation results and analysis

In the stereo stereogram constructed by MATLAB, regions with different colors
represent different illumination of the light receiving surface. If the adjacent regions
are closer in color or the flat region at the crest position is larger, this indicates that
the difference in the received illumination is smaller and the uniformity is larger. From
Fig. 63a, Fig. 63b and Fig. 63c, it can be seen that the middle regions of all three
figures show similar colors such as red, dark red, and orange, and the middle regions

of Fig. 63a and Fig. 63c have more similar colors than Fig. 63b. Comparing Fig. 63a
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and Fig. 63c, all of them have a certain plane area at the wave peak position, and the
plane area in Fig. 63a is significantly more than that in Fig. 63c, suggesting that the
matrix arrangement represented in Fig. 63a has the best illumination uniformity.
Therefore, the simulation method with Matlab software also proves that the matrix
arrangement of the LED source has the best light uniformity.

4.1.4 Discussion and conclusion

The light environment parameters of plant culture consist mainly of light source,
light quality, illumination, light duration, and light homogeneity. There are a number
of scholars who have conducted related studies of some of these factors and have
found some patterns in the effects of certain factors on plant growth. Yan et al. (2020)
systematically studied the effects of white-red and red-blue LED lighting environment
on the growth, quality and energy utilization efficiency of two kinds of lettuce, and
found that white-red LED light quality can replace red-blue LED light quality and be
used in lettuce hydroponic culture to improve resource utilization. Li et al. (2012)
found that the growth trend of lettuce under 16h continuous light is generally better
than that under 16h intermittent light. Kim et al. (2017) and Mu et al. (2020) studied
the effects of different pulsed light on the growth, quality and photosynthesis of
lettuce. They found that under the same conditions as the net photosynthetic rate of
continuous light, pulsed light patterns not only did not affect lettuce growth but also
improved quality. They also found that lettuce treated with pulsed light combined with
low frequency and high duty cycle produced better quality. Therefore, they propose
that in practical applications, an appropriate light source should be chosen in
combination with the energy cost of pulsed light. Ding (2014) and Wang (2017)
studied the effects of different duty ratios of LED on the growth, yield, quality, and
photosynthesis of lettuce. They found that duty ratios affect lettuce growth in two
ways: light and dark periods, and through the interaction of light and dark periods,
lettuce photosynthesis, growth and development, morphogenesis, and yield formation.
In this study, the illuminance gradient test found that 400 umol/(m? - s) illuminance
is the best illumination under artificial lighting conditions, and the simulation of

TracePro and Matlab software found that matrix LED light source arrangement has
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the best illumination uniformity compared with triangle and circle arrangement.
Through experimental research, we obtained the best light formula of hydroponic

Lettuce in PFALSs: the plant growth environment temperature is kept at about 22 C
and the humidity is kept between 70%~80%. The LED light source was positioned 28

cm away from the lettuce using a matrix arrangement. Compound light with a red-to-
blue light ratio of 7:1 is used during the seedling stage and a 6:1 ratio is used during
growth. The illumination was set to 400 umol/(m?-s) and the photoionization
period was set to 16h/d. The light formula can be used as a general scheme for large-
scale hydroponic lettuce in plant factories and also as a reference light formula for
other leafy vegetable varieties. This research has some practical implications for
promoting the industrialization and commercial production of artificial light
vegetables.

4.2 Experimental study of the effect of light quality on the quality of
hydroponic Cichorium endivia L. in ALPF

4.2.1 Light quality and plant factory planting

With the development of LED plant-lighting technology, LED plant growth
lamp has become the mainstream light source for plant growth in the ALPFs, and the
plant photosynthesis and light form construction under LED illumination has also
become the heated research focus (Eva et al., 2014; Zakurin et al., 2020; Lee et al.,
2021). Compared with traditional incandescent lamps, high-pressure sodium lamps
and other artificial light sources, the new generation of LED artificial light sources
has the advantages of small size, precise and controllable light quality and intensity,
low heat energy consumption, energy saving and environmental protection (Yeh et al.,
2009; Li et al., 2012; Sudthai et al., 2022). It is found that the red light and blue light
with the wavelength of 400-700nm are closest to the efficiency curve of plant
photosynthesis, and are the two main light sources for plant photosynthesis absorption
(Niu et al., 2015; Miao et al., 2019; Paradiso et al., 2021). Some scholars have studied
pea seedlings, lettuce seedlings and strawberries under illumination, and found that
red light can increase leaf area of pea seedlings, inhibit internode elongation of plants,

promote tillering and increase the accumulation of chlorophyll, carotenoids, soluble
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sugar and other substances (Chen et al., 2017; Li et al., 2017; Diaz-Galian et al., 2020).

Blue light is an important influencing factor of photosynthetic system activity and
photosynthetic electron transfer capacity of plants, which can obviously shorten the
vegetable internode spacing, promote lateral extension and reduce leaf area, and at
the same time, blue light can also promote the accumulation of secondary metabolites
of plants (Hitz et al., 2020; Diaz-Rueda et al., 2021). There are clear species-specific
differences in the requirements for plant light quality. Zhang et al. (2021) studied the
effects of continuous lighting with LED red and blue light before harvest and lighting
with different light quality on the growth and nutrient absorption of nitrogen form
hydroponic Lettuce, and found that the aboveground fresh weight of lettuce increased
significantly. Kim et al. (2018) studied the effects of different red and blue
illumination time on the growth and development of ice plant, and analyzed its growth
and development rules. It was found that when the ratio of red to blue light was 4:5
and the illumination time was 14 hours, it was more beneficial to the growth of ice
plants and improved their nutritional quality. Shao et al. (2020) studied the effects of
different red and blue LED illumination intensity on the growth and nutritional quality
of purple leaf lettuce. Their research results showed that appropriate higher intensity
lighting significantly promoted the accumulation of total ascorbic acid (TA) in lettuce
leaves, but reduced the ratio of ascorbic acid/TA. Lee et al. (2013) studied the effects
of white-red and red-blue LED lighting environment on the growth, quality and
energy utilization efficiency of two kinds of lettuce. At present, the conditions under
which the quality of the light affects the quality of the growth of various vegetables
are mainly set by a mixture of light masses consisting of monochromatic light and
light of different colours except white, or by different ratios of red and blue light.
However, the lighting conditions of endivia L., a species of the genus Cichorium, have
been poorly studied. In this paper, the PFAL is used as the experimental condition, the
Cichorium endivia L. is used as the experimental material, the hydroponics is used as
the cultivation method, the LED lamp is used to illuminate the plant growth, and the
white light is added to the red, blue and white light, so as to study the influence of
different proportions of LED red, blue and white light on the growth of Cichorium
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endivia L., and provide theoretical reference for the high-quality cultivation of

Cichorium endivia L. in greenhouse and plant factory.

Cichorium endivia L., native to Asia, India, and southern Europe, is frequently
used with its young leaves in fried, boiled, or cold foods. It is rich in nutrients such as
VC, carotene, calcium and potassium, and has the functions of removing heat and
relieving fever, inducing diuresis and relieving coughs, among other things, and is of
extremely high nutritional and medicinal value. Cichorium endivia L. has the
characteristics of strong stress resistance, readily cultivated and not easy to produce
diseases and insect pests, thus, it is widely selected by farmers (AMIMOTO et al.,
1997). It 1s also currently popular in China, where it has been planted in large areas.
(Zhao, 2020) Nevertheless, with the continuous improvement of people's living
standards, the requirements for the quality of vegetables are getting higher and higher,
and products with higher nutritional content are more likely to be favoured. In order
to meet the market demand for high-quality Cichorium endivia L., it is of great
economic importance to study the growing illumination conditions that allow
Cichorium endivia L. to produce better physiological indicators. The aim of this study
is therefore to explore the most appropriate lighting formulation for industrial
production of Cichorium endivia L. This will enable accurate regulation of the plant
light environment, reduce the energy consumption of plant light, and facilitate the
rapid development of the ALPF.

4.2.2 Materials and methods

4.2.2.1 Experimental materials

The material for the experiment was Cichorium endivia L., the seeds of which
were procured in the market. Plant lighting uses red, blue and white long strip LED
lights. The power is 200W and the quality, intensity and duration of the light can be
changed remotely by a program. Experiments were conducted using a hydroponic
approach, where the preparation and recovery of nutrient solutions is automatically
controlled by smart integrated water and fertilizer equipment. The environment in the
growing chamber, such as temperature, humidity, fresh air and plant canopy airflow,

is centrally and regulated through an intelligent integrated control system.
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4.2.2.2 Experimental design

According to the purpose of the experiment, the LED lamps with different
proportion of red (R), blue (B) and white (W) were divided into three treatment groups
and one control group, in which the red-light wavelength was 665 nm, the blue light
wavelength was 445 nm and the white light wavelength was 330~770 nm. Treatment
group 1 (T1) was 5R: 8B: 7W, treatment group 2 (T2) was 6R: 7B: 7W, treatment
group 3 (T3) was 5.5R: 8B: 6.5W, and control group (CK) was white light, as shown

in Table 13. The illumination intensity was 116+ 10umol/m? - s, the illumination

period is set as the ratio of illumination time to non-illumination time of 16 hrs: 8 hrs,
and the distance between LED lamp and cultivation board was 23cm. Under
illumination, the growth environment temperature is constant at 22 + 1°C and
humidity was constant at 76+2%; under no illumination, the environment temperature
was constant at 18 £ 1°C and humidity was constant at 76 + 2%. Each process is
repeated five times.

Table 13 Light quality composition of the experimental group

Experimental group Combined LED lightlllumination intensity
of red, blue and white (umol/m? - s)

CK White 116£10
Tl 5R: 8B: TW 116£10
T2 6R: 7B: TW 116£10
T3 5.5R: 8B: 6.5W 116£10

Note: CK is the control group and T1, T2 and T3 are the treatment groups.

4.2.2.3 Experimental procedure

Select high-quality seeds of Cichorium endivia L., soak them in warm boiled
water at 50~60°C for 3 hours, then wet them and put them in a ventilated shade for
20 hours, so as to relieve dormancy and promote the seeds to germinate, as shown in
Fig. 64 Select the seeds with strong germination and transplant them into the planting
sponge, add clean water and place them under the LED lamp for cultivation as shown
in Fig. 65. After about 7 to 10 days, when the seedlings have grown to 2 leaves and 1
heart, select the sturdy seedlings and transplant them to the planting tray for the
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growth and cultivation, as shown in Fig. 66. According to the requirements of the

experimental design, keep the growth environment, indoor air and CO, concentration
in line with the experimental requirements, ensure the air flow in the canopy and the
supply and flow of nutrient solution in the root zone, and precisely control the LED
light quality ratio and illumination intensity. After about 30 days, when Cichorium
endivia L. grows to the level shown in Fig. 67. The five largest plants from each group
were selected to measure the indices such as leaf number, dry weight (g) and fresh
weight (g) above ground, dry weight (g) and fresh weight (g) below ground,
chlorophyll (mg/g), carotene (mg/g), soluble sugar (mg/g) and so on.

Fig. 63 Seed germination of Cichorium endivia L..

4.2.2.4 Index measurement and data processing

Fig. 64 Seeding of Cichorium endivia L.
The fresh and dried weight of Cichorium endivia L. in the ground and
underground was measured by selecting the five largest plants from each treatment

group, wiping the droplets on the leaves and roots, and letting them stand for 20
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minutes. Accurately weigh the fresh weight of leaves and roots using an analytical

balance, and then place them in an 80 C oven. After drying to a constant weight, the

corresponding dry weight is accurately weighed using an analytical balance.

Fig. 65 Hydroponic Cichorium endivia L. growth
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Fig. 66 A sample of hydroponics Cichorium endivia L. after harvest.

The chlorophyll content, VC and carotene content of Cichorium endivia L.
were measured by ultraviolet spectrophotometry, and the soluble sugar content was
measured by enthrone colorimetry (Mu et al., 2010). Excel was used to collate the
recorded data and SPSS 23 software was used to analyze the data variance (P < 0.05),
and the S-N-K method was used to test the hypothetical variance (Larrinaga, 2010).
GraphPad Prism v5 was used to create the graph. The results were shown in the form
of mean + standard deviation.

4.2.3 Results

4.2.3.1 Effects on the number of leaves and biomass

The statistical data for the number of leaves and biomass of Cichorium endivia
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L. under different ratios of LED, blue and white light are shown in Table 14. For the

number of leaves, T2(78+7.63) and T3 (80.62+3.85) are higher than CK (63+6.38) in
the control group, but because of the large standard deviation in CK group, the data
improvement is not obvious when the average number in T1 group is the same. T2
and T3 are significantly improved. For aboveground fresh weight and aboveground
dry weight, there is little difference in CK between T2 and control group, but there is
no improvement in CK between T2 and T3. For underground fresh weight and
underground dry weight, there is no significant difference between T2 and CK in the
control group, but CK in T2 is not improved compared with T3.

Table 14 Effects of different ratios of LED red, blue, and white light masses on

leaf counts and biomass of Cichorium endivia L.

light number ofaboveground aboveground underground underground
treatmentleaves (pieces) fresh weight (g) dry weight (g) fresh weight (g) dry weight (g)

CK 63.00£6.38b  31.26+5.76a  2.39+0.72a  12.58+2.93a  1.06+0.29a
Tl 63.00+£3.26b  19.26+1.76b  1.36+0.16ab  9.76+1.65b  0.83+0.11ab
T2 78.00+£7.63a  26.19+2.82a  1.91+0.23a  11.91£3.06a  0.91+0.09a
T3 80.62+3.85 18.96+£2.69b  1.78+0.32ab  8.13+0.81b 0.63+0.12b

Note: CK is the control group and T1, T2 and T3 are the treatment groups.
4.2.3.2 Effect on Chlorophyll Content
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Note: CK is the control group and T1, T2 and T3 are the treatment groups.
Different lowercase letters indicate significant differences at the level of P<0.05.
Fig. 67 Effects of different proportions of LED red, blue and white light quality

on chlorophyll content of Cichorium endivia L..
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Fig. 68 shows the effect of different ratios of LED, blue and white light quality

on the chlorophyll content of Cichorium endivia L.. As can be seen from the figure,
the T1 and T2 groups increases the chlorophyll content of Cichorium endivia L., while
the T3 group decreases it. Compared with CK group (0.796), T1(5R:8B:7W) and
T2(6R:7B:7W) had higher mean value (1.089) than T2 group (1.023). Overall,
6R:7B:7W light irradiation of Cichorium endivia L. had the most pronounced effect
on increasing the soluble sugar content, and SR:8B:7W light irradiation had the most
pronounced effect on the chlorophyll content.

4.2.3.3 Effect on Carotene Content
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Note: CK is the control group and T1, T2 and T3 are the treatment groups.
Different lowercase letters indicate significant differences at the level of P<0.05

Fig. 68 Effect of LED light with different ratios of red, blue and white on
carotene content of Cichorium endivia L.

Fig. 69 shows the effect of different ratios of LED, blue and white light quality
on the carotene content of Cichorium endivia L.. Variations in the carotene content of
Cichorium endivia L. are similar to that of VC and show a ladder-like upward trend.
The mean value of T1 group (0.071) was slightly higher than that of CK group (0.058),
and the maximum value of T1 group was 0.091. The mean value of T2 group (0.096)
and the data of three samples were all 0.096, which was significantly higher than CK
group. The mean value of T3 group (0.108) and the maximum value of samples
reached 0.116, which was close to twice the mean value of CK group, T1(5R: 8B:
TW), T2(6R: 7B: 7W) and T3 (5.5R: 7W) can obviously promote the synthesis of

Cichorium endivia L., among which T3 group had the most significant effect.
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4.2.3.4 Effect on vitamin C content

Fig. 70 shows the effect of light quality of different proportions of LED, blue
and white on the vitamin C content of Cichorium endivia L.. Compared with the
control group, the data of the three experimental groups were significantly improved.
The mean value of group T1 (0.297) was about 2.6 times that of group CK (0.114),
and the improvement was more significant. The mean value of T3 group reached
(0.512), which was about 3.8 times that of CK group (0.131), greatly increasing the
content of VC. The light combinations of TI1(5R:8B:7W), T2(6R:7B:7W) and T3
(5.5R: 8B: 6.5W) can promote the synthesis of VC in Cichorium endivia L., among
which T3 group had the most significant effect.
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Note: CK is the control group and T1, T2 and T3 are the treatment groups.
Different lowercase letters indicate significant differences at the level of P<0.05

Fig. 69 Effects of LED light with different ratios of red, blue and white on the
vitamin C content of Cichorium endivia L.

4.2.3.5 Effect on soluble sugar content

Fig. 71 shows the effect of LED light consisting of different ratios of red, blue
and white light as supplementary light on the soluble sugar content of Cichorium
endivia L.. Significant differences were seen between the three treatment groups, with
the T1 group having a lower mean content than the CK group. The difference between
the T3 group and the CK group is not significant, with an average value (2.806)
slightly higher than the control group (31.372). The T2 group had significantly higher
levels of soluble sugar than the CK group. T2 (6R:7B:7W) significantly promoted the
synthesis of soluble sugars in chicory, while T1 (5R:8B:7W) and T3 (5.5R:8B:6.5W)
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had no significant effect on the synthesis of soluble sugars in Cichorium endivia L..
Overall, irradiation with an composition of light quality of 5.5R:8B:6.5W had the

most significant effect on increasing VC and carotenoid.
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Note: CK is the control group and T1, T2 and T3 are the treatment groups.
Different lowercase letters indicate significant differences at the level of P<0.05

Fig. 70 Effect of LED light with different ratios of red, blue and white on
soluble sugar content of Cichorium endivia L..

4.2.4 Discussion

In the process of plant growth and development, light is one of the
indispensable factors affecting plant physiology and morphology. Among the
influencing factors of light environment, light quality is closely related to plant
growth and development, playing a crucial role in plant growth and development,
light morphogenesis, photosynthetic pigment synthesis, and nutrient accumulation
(Gaoetal.,2021). LED lights composed of different light quality ratios have different
effects on the growth and nutritional quality indicators of Cichorium endivia L. when
supplementing plants with light. Experimentally, a light mass ratio of 5.5R:8B:6.5W
promotes vitamin C and carotene synthesis in Cichorium endivia L..

Young leaves of Cichorium endivia L. can be consumed, and the leaves contain
mainly nutrients such as vitamins. The results show that increasing the number of
chicory leaves is beneficial when the light-to-mass ratio is 6R:7B:7W and
5.5R:8B:6.5W. Increasing the chlorophyll content of Cichorium endivia L. is
beneficial when the light-to-mass ratio is 6R:7B:7W and 5R:8B:7W. This suggests
that increasing the proportion of blue light or decreasing the proportion of red light is
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more conducive to the synthesis of chlorophyll. Li et al. (2020) also confirmed this

when studying the effect of different combinations of blue and red light LEDs on the
growth of mung bean sprouts.

The soluble sugars in vegetables mainly include glucose, sucrose, trehalose,
etc., which play a key role in maintaining the stability of plant proteins (Saldivar et
al., 2010). The 6R:7B:7W light mass ratio significantly increases the soluble sugar
content of Cichorium endivia L. compared to the SR:8B:7W ratio. It is speculated that
red light is more conducive to the synthesis of soluble sugars in plants, which is
consistent with the research results of Liu et al. (2014).

VC is an antioxidant in plants, and its content can essentially reflect an active
oxygen scavenging ability or antioxidant ability in the plant, which has a significant
effect on the storage of vegetables. Experimental results show that an LED light
quality of 5.5R:8B:6.5W is beneficial for increasing the VC content in Cichorium
endivia L.. Ban et al. (2019) and Liu et al. (2021) found that under red and blue light
conditions, VC content increases with an increase in red light ratio. In this experiment,
compared with the light quality composition of 5.5R: 8B: 6.5W, the light quality
composition of 6R: 7B: 7W increased the red light content and decreased the blue
light content, while the increase in vitamin content was not significant.

4.2.5 Conclusions of this section

In summary, a mixture of red, blue and white light increased the number of
leaves in the borage compared to pure white light, with a light quality of
5.5R:8B:6.5W being the most favourable for increasing the number of leaves, VC
content and carotenoid content. The 6R:7B:7W optical quality is most favorable for
increasing the soluble sugar content of Cichorium endivia L., while the SR:8B:7W
optical quality is most favourable for increasing the chlorophyll content of Cichorium
endivia L.. Choosing a certain proportion of mixed light quality for supplementary
lighting can improve the quality of Cichorium endivia L..

With this experimental study, we have further verified that the quality of plant
products can be improved by precise regulation of the light environment. However, a

comparison of the effects of artificial and natural light on plant quality and the need
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for light regulation in different varieties of plants requires a more in-depth and

extensive study.

4.3 Screening study on the formulation of nutrient solution for hydroponic
green leaf lettuce in plant factory with artificial light

4.3.1 Plant factory hydroponics and nutrient solution formula

Hydroponics is a soilless cultivation technique (Sambo et al., 2019; Son et al.,
2021; Fussy et al., 2022) that has rapidly developed in recent years due to its
promotion of clean and environmentally friendly plant production. It has been widely
applied in plastic greenhouses, glass greenhouses (Khan, 2018; Koukounaras, 2020) ,
and ALPFs (Kozai et al., 2013a; Yang et al., 2019).This cultivation method involves
growing plants directly in a nutrient solution without the use of soil or substrate (Wild,
1985; Peyvast et al., 2010; Khater et al., 2021). Hydroponics offers advantages such
as shorter growth cycles, higher yields, superior quality, reduced susceptibility to
pests and diseases, water and nutrient efficiency, and automated management
(Hyunjin et al., 2021). However, the absence of soil buffering and microorganisms
necessitates careful selection of nutrient solutions for optimal crop growth and
development (Kilinc et al., 2007; Lele et al., 2020; Lu et al., 2022). In the production
of hydroponic leafy vegetables, the formulation of nutrient solutions is closely
associated with the source and quality of water (Vandam et al., 2017; Jakobsen et al.,
2020). It can be said that the choice of water source, water quality, and water-soluble
fertilizers determines the nutrient solution composition (Schwarz et al., 2005; Dias et
al., 2018; Elisa et al., 2020). Selecting the optimal nutrient solution formulation based
on water quality and leafy green specific requirements is a critical challenge in
hydroponic leafy green production with the goal of achieving high yield and quality.

Lettuce, also known as leaf lettuce, is a year-round to biennial herbaceous plant
in the family Asteraceae. It is crisp and tender, primarily consumed raw (Martinez-
Sanchez et al., 2012), and is an indispensable leafy green ingredient in people's daily
lives (Sirsat et al., 2018). Green leaf lettuce is highly suitable for hydroponic
cultivation in ALPFs, characterized by its high germination rate, resistance to tip burn,

downy mildew, and frost injury, as well as firm leaf bases (Saengtharatip et al., 2018;



194
Lee et al., 2019). It has a lush green appearance, resembling an open green rose. As

such, it has both ornamental, culinary and commercial economic value.

4.3.2 Materials and methods

Experimental site and overview. The experiment was conducted at the ALPF
laboratory of the Henan Institute of Science and Technology from July 2021 to March
2022. The laboratory is located on the first floor of Teaching Building 9 at the Henan
Institute of Science and Technology in Xinxiang, Henan province. It has a total floor
area of approximately 200 m? and a ceiling height of approximately 3.3 m. The
laboratory is equipped with a range of equipment and systems, including air
conditioning, dehumidifiers, integrated irrigation systems for water and nutrients, an
intelligent LED plant lighting system, a ventilation system, an intelligent
environmental monitoring system, water purification equipment, nutrient solution
disinfection and recycling equipment, CO, automatic control systems, ultraviolet
disinfection lamps, a wireless loT system, and a comprehensive front-end control
system. These devices and systems are primarily used to regulate environmental
conditions, lighting, fertilization and irrigation needed for plant growth. During the
illumination period, the laboratory maintained an ambient temperature of
approximately 23°C and a carbon dioxide concentration of 800 mg/l. The ambient
temperature was set to around 18°C during the non-luminous phase and the CO;
concentration was 500 mg/l. Moisture control is around 70%. The illumination
duration was set to 14 h/d. The combined use of these laboratory conditions and
equipment helps to ensure optimal environmental and resource supplies for plants at
different growth stages, providing strong support for experiments.

Experimental materials. Experiments were performed using the hydroponic
method. Two three-tier culture racks were used. Each tier of the cultivation rack
consists of a cultivation trough, an insulation board, a liquid reservoir, and a
circulation and irrigation pump that circulates the nutrient solution automatically
between the tiers. Each growing trough measures 120 cm in length, 80 cm in width
and 8 cm in height and has a capacity of 46 litres, allowing simultaneous hydroponic

cultivation of 96 leafy vegetable varieties. The top of each level of the growing rack
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is equipped with adjustable LED lights in red, blue and white. The light quality,

intensity and illumination period of LED lights can be adjusted independently. Each
treatment involved the planting of 48 lettuce seedlings and was repeated three times
in a random arrangement. The hydroponic experiment of green leaf lettuce in PFAL

laboratory is shown in Fig. 72.
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Fig. 71 The hydroponic experiment of green leaf lettuce.

Nutrient formulation and management. In the experiment, Arnon and
Hoagland general formula (Arnon), Huanong a formula (Hunong A), Yamazaki
formula (Yamazaki) and Japanese garden experiment general formula (GE)
(Petropoulos et al., 2018), which are most conducive to leaf vegetable cultivation,
were used, and compared with the water-soluble chemical fertilizer produced by
commercial enterprises. The general formula was used for the proportion of
microelements (Laland et al., 1955), and the commercial water-soluble leaf vegetable
fertilizer produced by Henan Xinlianxin enterprise was used as the control. The
formula details are shown in Table 15. The water used for nutrient solution
preparation is purified water treated by reverse osmosis purification equipment, with
a pH of 7.1 to 7.3, no fluoride, arsenic, selenium, copper, lead, cadmium, or zinc
detected in the water, chloride < 0.25mg/L in the water, and an EC value of 0.25
to 0.4 mS/m3. The nutrient solution is intelligently prepared by water and fertilizer
integrated irrigation equipment, and is fed by an oxygen pump to maintain Dissolved

Oxygen (DO) DO = 10mg/L, the EC value is set at 1.8~2.2 mS - m~3 and the pH

value is set at 6.0-6.9. The nutrient solution is changed every 7 days.
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Table 15 Specific formula of nutrient solution.

macro-elements (mg/L) micro-elements
formula . :
A solution B solution (mg/L)
Calcium nitrate Potassium

tetrahydrate 945 dihydrogen
Arnon and Hoagland Potassium  nitrate phosphate 136

(T1) 506 Magnesium sulfate

Ammonium nitrate 493

80 Iron salt solution 2.5
Formula A of Leafy : : Potassium
Vegetables jp Calelum - nitrate g gooen

53 tetrahydrate 472 yaros Disodium EDTA 30
Agricultural : : phosphate 100 S
: potassium  nitrate ) boric acid 2.8
Chemistry Room of potassium  sulfate
. 267 Manganese sulfate
South China : :
) ammonium nitrate . 2.2
Agricultural magnesium sulfate "
: : 53 zinc sulfate 0.22
University (T2) heptahydrate 264
: copper sulphate 0.08
: . Ammonium .

Calcium nitrate dihvdrocen  nitrate ammonium
Japanese Yamazaki tetrahydrate 472 yarog molybdate 0.02
(lettuce) (T3) gg;assmm nitrate magnesium  sulfate

heptahydrate 246
: : Ammonium
Calcium nitrate

Japanese  Garden tetrahydrate 945 dihydrogen  nitrate

general formula (T4) potassium  nitrate

209 magnesium sulfate

heptahydrate 493

Determination items and methods. After 35 days of transplantation, leaf
counts were manually recorded and measurements were taken using a ruler to
determine root length, maximum leaf length, and maximum leaf width for green leaf
lettuce. In addition, an electronic scale was used to measure the fresh weight and root
fresh weight of individual plants. Data processing and analysis were performed using
Excel 2021 and SPSS 20.0.

4.3.3 Results

Effect of different nutrient solution formulations on leaf growth in green
leaf lettuce. From Table 16, it can be observed that T1 and T4 had higher leaf counts

after 35 days of transplantation and there was no significant difference between them,
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but the T4 treatment had significantly higher leaf counts than the other formulations

and control. T3 and CK had longer maximum leaf length and there was no significant
difference between them, but the T3 treatment was significantly higher than the other
formulations. The CK and T3 treatments had wider maximum leaf widths and there
was no significant difference between them, but CK was significantly higher than the
other treatment groups.

Table 16 Indexes of green leaf lettuce at harvest with different nutrient

solutions.

Experimental Leaf leaflength leaf width rootlength  Root Fresh
group number /cm /cm /cm weight /g weight /g
T1 29ab 18.6d 12.3b 24.6¢ 6.2b 106.7c
T2 27c 19.5¢ 13.7b 32.7a 8.6a 137.3ab
T3 27c 21.6a 13.8ab 27.9b 6.7b 128.8b
T4 30a 20.1bc 13.6b 23.5¢ 6.3b 139.6a
CK 28bc 21.3ab 14.3a 23.6¢ 8.9a 138.1ab

Note: No identical lowercase letters after the data in the same column indicate

significant differences between groups (P<<0.05).

Effect of different nutrient solution formulations on root growth of green
leaf lettuce. From Table 16, it can be observed that after 35 days of transplantation,
the maximum root length is significantly larger for the T2 treatment compared to the
T3 treatment and significantly larger for the T3 treatment compared to the other
treatments. The control group (CK) and the T2 treatment had the highest root weight,
with no significant difference between them, but they were significantly higher than
the other treatment groups.

Effect of different nutrient solution formulations on fresh weight of green
leaf lettuce. From Table 16, it can be observed that after 35 days of transplantation,
the highest fresh weight was found in the T4 treatment group, the CK control group,
and the T2 treatment group, with no significant differences among them, but
significantly higher than the T1 treatment group and the T3 treatment group. The T1

treatment group had significantly lower fresh weight compared to the T3 group.
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4.3.4 Discussion

Producing vegetables using a hydroponic model requires the selection of the
optimal nutrient solution formula for vegetable growth (Miller et al., 2020). In this
experiment, four nutrient solution formulations were compared with a commercial
leafy vegetable nutrient solution under the hydroponic model and the PFALs
management method. Of these, T2 and T4 showed a significantly higher fresh weight
of lettuce compared to the other formulations, but the difference from the commercial
nutrient solution was not significant. The second best formulation, T3, has a slightly
lower fresh weight compared to the three aforementioned formulations. Thus, in terms
of yield factors, T2 and T4 can be used for hydroponic romaine in ALPFs, followed
by T3. Maximum leaf length and maximum leaf width are essential factors in
evaluating the appearance and quality of green leaf lettuce. Both the maximum leaf
length and width of the T3 group exceed those of the other experimental groups. Since
hydroponic romaine is sold primarily as individual plants, the T3 stands out as the
best option in terms of aesthetic quality.

Zhang (2005) conducted experiments with 1/4 strength Hoglan-Anon formula,
Yamamoto-Sasaki lettuce formula, and South China Agricultural University lettuce
formula to cultivate American fast-growing lettuce with leaf ages ranging from 2 to
17. It turns out that the Hoglan-Anon formula at strength 1/4 yields the highest results.
Li et al. (2019) used the Japanese Garden test formula and Hoagland formula to grow
long-heading Italian lettuce. The results showed that the Japanese Garden test formula
outperformed the Hoagland formula in terms of yield, plant height and leaf width.
Ding et al. (2012) compared the effects of the Hogeland, Japanese Garden test,
Japanese Yamazaki, and South China Agricultural University (SCCU) lettuce
formulas in cultivating Italian lettuce with leaf ages below 8. The results demonstrate
that the SCCU lettuce formulation achieves the highest yield.

Soilless cultivation of vegetables is a complex feedback system. Environmental
factors, cultivation methods and nutrient supply are the primary factors influencing
soilless cultivation (Balliu et al., 2021). In hydroponic management, nutrient solution

temperature, dissolved oxygen (DO), pH, and EC value are all critical factors
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affecting root growth and nutrient absorption, and these influencing factors require
further in-depth research (Suyantohadi et al., 2010). Therefore, in agricultural
production, it is essential to screen a suitable nutrient solution formulation based on
factors such as vegetable variety, growth stage, cultivation method and water quality.

4.3.5 Conclusions of this section

The experimental study concluded that, in terms of stem and leaf, fresh weight,
root fresh weight, root-to-shoot ratio, plant height, stem diameter, and leaf count, the
hydroponically grown green lettuce in the artificial light plant factory performed best
when using the universal formula from Japanese horticultural trials and the Formula
A from the South China Agricultural University's agricultural chemistry laboratory.
The next best performer was the Yamasaki formula. In terms of visual appearance,

however, the Yamasaki formula exhibits the most favourable results.
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SECTION 5. SUMMARY AND PROSPECT

5.1 Summary of research work

Based on the analysis and study of artificial light plant factories, this
dissertation proposes the construction vision and ideas for building greenhouse,
intelligent building greenhouses and intelligent building greenhouse plant factories.
As the research work progresses, this dissertation then proposes the concept of
building and developing urban intelligent plant factories in urban areas and gives an
overall framework and solution for the multi-factor coupling, precise regulation and
optimization of an artificial light plant factory environment based on a growth model.
The series of results and achievements achieved in the work have been used as a
standard of industrial technology for modern agriculture in practical production for
theoretical and technical guidance.

-The concepts and ideas of intelligent building greenhouses, intelligent building
greenhouses, plant factories, and the "3-Positions and 1-Entity" development model
proposed in the study have been recognized by some government management
departments and enterprises. Several departments of the Henan provincial
government have expressed great interest, and a company in Xinxiang and two in
Zhengzhou have held multiple consultations and exchanges.

-The research results of "Sustainable production systems of urban agriculture
in the future: A case study on the investigation and development countermeasures of
the Plant Factory and Vertical Farm in China" have been widely cited by researchers,
entrepreneurs, and government decision-makers as survey data to guide decision-
making.

- Inspired by multiple research achievements, the college invested in the
construction of an artificial light plant factory laboratory, conducted extensive related
research, and taught graduate programs in agricultural engineering and information
technology, crop cultivation, and agronomy. It has trained a large number of graduate
and undergraduate students in more than a dozen of our school's specialties, including
agricultural engineering, crop cultivation, botany, vegetable science, facility

horticulture, and agricultural product processing. The lab has also become a popular
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science education base for multiple primary schools in Xinxiang City, where the clean
and pollution-free leafy vegetables grown in the lab have been praised by 80 percent
of the school's teachers and students.

-The system composition and structure proposed in the research on "Urban
Intelligent Plant Factory Environmental Control and System Design" and "Plant
Factory Big Data and Plant Growth Model" provide a complete product solution for
enterprise design and development. It has been implemented and applied to the
developed plant factory comprehensive management system platform.

- The proposed tomato fruit detection and CMRDF cucumber seedling instance
segmentation algorithms have been implemented and applied in tomato yield
estimation systems, smart orchard projects, plant growth model construction in plant
factories, and are gradually being applied in robotic picking and post-harvest fruit
grading and classification devices.

- Results of multiple experimental studies, including simulations of LED light
distribution and uniformity, screening of lettuce light formulations, and screening of
bitter chrysanthemum nutrient solutions, have been confirmed and applied in other
laboratory studies. Also consider implementing some solar greenhouse facilities for
cultivation and small plant factories in research and development. The results have
been applied to Henan ZSP's intelligent plant lighting controller product, which has
increased the level of intelligence in the product, generating huge economic benefits.

- Other research results are gradually being recognized and implemented as
public awareness increases.

5.2 Shortcomings

Due to time constraints and the lack of experimental equipment and conditions
for further research, the study has many shortcomings.

(1) At present, research on the construction methods of plant growth models
based on big data and deep learning is relatively independent, scattered, and
incomplete. Only a few deep learning models have been attempted for exploratory
modeling studies, and substantial long-term research is still needed in the future.

(2) At present, relatively independent experimental studies have been
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conducted on the effects of light environment, temperature and humidity environment,

and nutrient solution environment factors on plant growth, and shallow research has
been conducted on the coupling effect. Thereby, the precise intelligent regulation of
multiple environmental factors is not comprehensive and deep enough.

(3) The current research on the architecture of the environment multi-factor
precise regulation platform based on plant growth models is still in the development
and testing stage of subsystems, subfunctions, and submodules, and has not yet been
integrated into an integrated cloud platform. Further research and development is
required to achieve multi-factor coupling precise regulation.

5.3 recommendations

For the government and social organizations: Using all available urban areas
to develop urban agriculture is an unavoidable and essential step for the worldwide
urbanization and modernization of agriculture. Environmental multi-factor coupling
precise regulation, and optimization are the key core technologies of an urban
intelligent plant factory, which must be planned as a priority to ensure its development
direction of mechanization, automation, intelligence, and unmanned and promote its
rapid development of commercialization, industrialization, and marketization.

For future research work: The study presented in the dissertation is only the
beginning of this complex research topic, which requires further in-depth
investigation and study of its theoretical foundations and key techniques. In future
work, we should first conduct an in-depth theoretical exploration of the principles of
plant photosynthesis, growth and development mechanisms, physiological and
biochemical mechanisms, environmental signal transduction, gene expression and
other aspects. We should then study the means and techniques of environmental
regulation, verify the reliability and effectiveness of its regulatory techniques in the

laboratory, and finally apply these to production practices to guide actual production.
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22A210013, Henan Provincial Department of Education, 2022 Annual Key Scientific
Research Project of Henan Higher Education Institution, 2021.12, Principal and main
participant of the project, Approved and funded (CNY ¥30,000).

44. Multi-factor coupling control and optimization of urban intelligent plant
factory environment, 222102320080, Henan Provincial Science and Technology
Department, 2022 Henan Provincial Science and Technology Research Project,
2021.12, Principal and main participant of the project, Approved and funded (CNY
¥100,000).

45. Research and industrialization of key technologies for precise management
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and control of smart orchard, 21ZD003, major science and technology project of

Xinxiang City, Henan Province, 2021.10, Main participant, approved and funded
(CNY ¥1,000,000).

46. Research on intelligent management and control technology of the plant
factory based on IoT and Big Data, 232102111124, Henan Provincial Science and
Technology Department, 2023 Henan Provincial Science and Technology Research
Project, 2023.3, Principal and main participant of the project, Approved and funded
(CNY ¥100,000).

47. Study and Application of a Beneficial Streptomyces Strain for Disease
Control and Growth Promotion in Wheat Planting, 232102111015, Henan Provincial
Science and Technology Department, 2023 Henan Provincial Science and Technology
Research Project, 2023.3, Main participant, Approved and funded (CNY ¥100,000).

48. Research on application technology of autonomous wall-climbing robot for
large-scale ship cleaning task, 212102210161, Henan Provincial Science and
Technology Department, 2021 Henan Province Science and Technology Research
Project, 2020.12, Main participant, approved and funded (CNY ¥100,000).

49. Research and application of community intelligent security technology

based on ghost module and morphological aggregation, 222102210165, Henan

Provincial Science and Technology Department, 2022 Henan Province Science and

Technology Research Project, 2020.12, Main participant, approved.
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Documents on the protection of rights to inventions and utility models on the

topic of the dissertation
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Utility Model Patent Certificate: A multispectral crop phenotypic analysis
platform for plant factories. (In Chinese, Patent NO. ZL 2021 2 1596146.7)
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Utility Model Patent Certificate: A all-artificial-light plant factory layer height
adjustable assembly type aeroponics culture planting layer shelf. (In Chinese, Patent

NO. ZL 2022 2 0821668.2)
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Utility model patent certificate: LED supplemental light type planting cabinet.
(In Chinese, Patent NO. ZL 2023 2 0899208.6)
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Notification of Acceptance of Invention Patent Application: A universal real-
time detection and counting method for eggplant and fruit vegetables and fruits in

plant factories. (In Chinese, Patent NO.202210152745.4)
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Computer Software Copyright Registration Certificate: Plant factory image

acquisition system VO0.1. (In Chinese)
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Computer Software Copyright Registration Certificate: Plant factory water

circulation control system V0.1. (In Chinese)
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Computer Software Copyright Registration Certificate: Plant factory 3D image

acquisition system VO0.1. (In Chinese)
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Computer Software Copyright Registration Certificate: The national grain yield

monitoring system (referred to as the grain yield monitoring system) VO0.1. (In

Chinese)
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Computer Software Copyright Registration Certificate: Intelligent diagnosis
system for diseases and pests in orchards based on knowledge graph (referred to as

intelligent diagnosis system for pests and diseases in orchards) V0.1. (In Chinese)
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Computer Software Copyright Registration Certificate: The automatic
detection system for Chinese cabbage diseases and pests (abbreviated as the Chinese

cabbage diseases and pests detection system) VO0.1. (In Chinese)
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Computer Software Copyright Registration Certificate: Plant factory

germination rate detection system VO0.1. (In Chinese)
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International academic conferences attended during the work:

CERTIFICATE

is awarded to

Wang Xinfa

for being an active participant in
Il International Scientific and Practical Conference

“TOPICAL ISSUES OF MODERN SCIENCE
SOCIETY AND EDUCATION”

24 Hours of Participation
h (0,8 ECTS credits)

EHE

KHARKIV
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, 3
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One Heatrn Stupest INTERNATIONAL CONFERENCE
E 24 -17rH NovemBer 2021 aé
CERTIFICATE OF PARTICIPATION

Mrs./Ms,/ e,

Xinfa WANG

For the participation in the first edition of
One Health Student International Conference, held at USAMV Bucuresti, with the scientific paper
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CERTIFICATE

CHAY This certificate confirms participation

Yulmppcurer,
U B E-OE AT

Xinfa Wan

in the work of the Interndtional Scientific and Practical Conference
HONCHAROV'S READING',
devoted to the 93 th anniversary of the birth of the brider-potato,
the laureate of the State Prize ohe USSR, in science and techinology,
Honored Worker of3cwuce and Technology of Ukraine,
doctor ofagriewftural science, professor
: 2 OLY DEMIANOVICHA

Sl

Vice-rector for Scientg 1RO :
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Sl Doctor of Economics N - : u. Danko

CHAY
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Second International Workshop
on Vertical Farming
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[ N

CERTIFICATE AUTHORIZATION

The Fifth International Workshop on
Environment and Geoscience
(IWEG2022)

Paper 1D: IWEGSS1 T3
Presemter: Xainla'Wwang and Shenwer W
Paper Title: Research on Intelligent Building Greenhouse Plant Factory and = 3-

Posiions and [=Entity™ Development Mode

e \
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Academic visits and exchanges for scientific work:
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(d)

Photos of academic exchange activities with internationally renowned peer
scholars: (a) Professor Toyoki Kozai, the most famous international plant factory
expert (Japan); (b) Researcher Yang Qichang, the most famous expert in Chinese plant
factories; (c) Researcher Tong Yuxin, a renowned expert in Chinese plant factories;
(d) Professor He Dongxian, a renowned environmental control expert in Chinese plant

factories.
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p S 3

v

2021.03.31 15:14

) Welcome to
Breeding ccelerator!

S

Photos of enterprise visits and research for scientific work: (a) Vegetable
research center of Beijing academy of agricultural and forestry sciences (Beijing,
China); (b) Yichuan Jianye green base development co., Itd. (Luoyang, China); (c)
Shouguang vegetable high tech demonstration park (Shouguang, China); (d) Institute
of urban agriculture, Chinese academy of agricultural sciences (Chengdu, China); (e)
Intelligent horticultural equipment research center (Chengdu, China); (f) Future
Zhinong technology co., Itd. (Beijing, China).
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(b)

Photos of other scientific work: (a) Vice President Cao Guojie of Henan
Institute of Science and Technology inspecting and guiding scientific work (Xinxiang,
China); (b) News on the website of the School of Engineering and Technology at
Sumy National Agricultural University (Sumy, Ukraine).



272
APPENDIX D.1

Experimental and research implementation sites and scenarios:

2021.09.21 1948

The photos of the all-artificial-light plant factory laboratory at Henan
University of Science and Technology, Xinxiang, China (main experimental site): (a)
panoramic view of the planting room; (b) hydroponic growing shelves; (c¢) one side

of the planting room; (d) leaf vegetable planting experiments.
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The photos of Image data acquisition equipment and platform (Experiment and
Research 3.1, 3.2): (a) Tomato image data acquisition equipment; (b) Plant growth
image data acquisition platform; (c) Collect RGB image data of cucumber seedlings;
(d) Collected depth image data of cucumber seedlings; (e) The fused RGBD image

data of cucumber seedlings.
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The photos of laboratory research (section 3.1, 3.2, 4.1, 4.2, 4.3) at all-artificial-
light plant factory of Henan Institute of Science and Technology, Xinxiang, China: (a)
Data annotation results; (b) Real-time object detection results for tomato fruits
(research 3.1); (¢) instance segmentation results for green leafy vegetable seedlings
(research 3.2); (d) experiments on the light uniformity of lettuce (research 4.1); (e)
light quality screening experiments on the Cichorium endivia L. (research 4.2); (f)

screening experiments on nutrient solutions for green-leafy vegetables (research 4.3).
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(d) (e) ()

(2) (h) (1)

The photos of environmental single factor regulation methods and techniques:

(a) Environmental temperature and humidity regulation techniques; (b)
Environmental humidity regulation (using a dehumidifier); (c¢) Monitoring of
environmental temperature, humidity, and CO, concentration; (d) Light regulation for
plant growth (using LED lights); (e) Light monitoring (using light sensors); (f)
Integrated irrigation system for water and fertilizer; (g) monitoring of EC, DO, and
PH of nutrient solution; (h) environmental CO, concentration regulation; (1) Planting

layer shelf airflow control.
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(b)
The photos of the central controller system with coupling regulation of multiple
environmental factors: (a) the integrated central control system hardware; (b) the main

interface of the control system software.
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The photos of scientific work: (a) plant transplantation and planting; (b)
planting management; (c) plant height measurement; (d) measurement of plant stem
thickness; (e) academic exchange and guidance; (f) modern agricultural education and

interest cultivation for primary school students.
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Documents approving scientific research projects and obtaining funding from

the government:
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Government project approval document: 2021 henan province key R&D and

promotion special project, key technology R&D and application of intelligent

building greenhouse plant factory (212102110234).
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Government project approval document: 2021 xinxiang city science and
technology major special project, smart orchard precision control key technology

research and industrialization (21zd003), with a funding of 1 million rmb.
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Government project approval document: 2022 henan province key r&d and

promotion special project, multi factor coupling regulation and optimization of urban

intelligent plant factory environment (222102320080), with a funding of 100000 rmb.
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Government project approval document: 2022 key research project of higher
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artificial-light plant factory aeroponics culture system (22a210013), with a funding of
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Government project approval document: 2022 henan province key r&d and

promotion special project, research on intelligent control technology for plant
factories based on IoT and Big Data (232102111124), with a funding of 100000 rmb.
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Government project approval document: 2023 Henan province key r&d and

promotion project, research and application of a beneficial streptomyces strain in

wheat planting prevention and growth promotion (232102111015), with a funding of

100000 rmb.
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Project completion certificate: Henan province science and technology research
program project, key technology R&D and application of intelligent building
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Acts of implementation of the results of dissertation work
Henan ZSP (ZhiShengpu) Electronic Technology Co., Ltd. has applied the new
technology achievement certificate of "Multi factor Coupling Precision Control and

Optimization of Artistic Light Plant Factory Environment Based on Growth Model".

zsP>

Enterprise Application Certification

The new technology of "Multi factor Coupling Precision Control and
Optimization of Artificial Light Plant Factory Environment Based on
Growth Model" completed by Wang Xinfa has been successfully applied
in our company's containerized artificial light plant factory equipment,
implementing the annual, clean, and industrial production process of leafy
vegetables, and conducting experimental verification and industry practical
application testing. The test results and phased use prove that this new
technology and invention has the advantages of high intelligence, high
automation, and high control accuracy. It can increase water utilization rate
by 10%, save water-soluble fertilizer by 8%, and comprehensively reduce
electricity by 18%, significantly reducing the production cost of leafy
vegetables. These scientific results and achievements have good
commercial value and development prospects for the industrialization and
commercialization of artificial light plant factories.

Hereby certify.

December 16, 2022
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