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Pylypaka S., Chepizhny A. Movement of material particles along blades on horizontal disc,
which rotates around a vertical axis

The article analyzes the study of particle motion along the horizontal disc blades rotating about a verti-
cal axis, and suggested possible options for the definition of the blade profile to set the required particle's
trajectory. To perform this task derived generalized differential equations of motion of the particle along the
straight and curved blades. A comparative analysis of kinematic parameters of motion for different forms of
blades.

Keywords: particle logarithmic spirals horizontal disc, the axis of rotation, curved blades, straight
blades, pressure force, absolute acceleration, differential equations.
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HYDRAULIC RESISTANCE OF BODIES IN WATER FLOW

A.B. Shandyba,
G.S. Golovchenko
SumyNational AgrarianUniversity, Ukraine

The paper presents the calculation model for hydraulic resistance of bodies in water flow. Experi-
mental verification is made for the axially symmetric cases. A satisfactory agreement is obtained to confirm
the influence of the local attack angle and current cross-sectional area of flow contraction.

Keywords: hydrodynamic interaction, water flow, contraction geometry, attack angle pressure distri-
bution, hydraulic resistance

1. INTRODUCTION Boussinesge model [1,5].

The conical contraction is the most wide- Taking into account the change of the flow
spread unit of many technical systems. Also itis the | structure in contraction, one must consider the two
noticeable sample of hydrodynamic interaction be- | characteristic sections of the flow: before and into
tween flow and streamlining bodies. In this consid- | contraction. The character of the interaction of each
eration we shall be limited by the developed turbu- | stream with the conical surface depends on its initial
lence regime that allows us to examine the influence | disposition in flow before contraction and the con-
of the contraction geometry, pressure distribution, | traction geometry. At this point of view the boundary
energy losses and drag resistance. streams seem to be most important. Under the un-

2. THEORY separated streamlining movement, these have quite

It was found that the loss of pressure in axially | defined ways like the contraction formative lines
symmetric conical contraction (fig. 1) is connected | [1,2].
with the excess pressure of viscous flow to ideal flow Using the impulse conservation equation the
by the following equation: excess pressure can be found for the boundary

R streams. Thus, if a liquid particle with mass equal p
ApS) :2”£f(r)rdr M | has the impulse p(ky#}) in cross-section 1-1 (where

where Ap is loss of pressure, S, is lesser cross- | Kois ratio of boundary stream velocity to average flow
sectional area, r, R are radiuses of lesser and great- velocity before contract_ion), th.en its_impulse wiII_ be
er cross sections, and f(r) is excess pressure of vis- | €dual p(koli)cosa after interacting with the conical
cous flow to ideal flow. surface under attack angle « .

To determine this function f(r) we suppose the The corresponding excess pressure in the
whole flow in the contraction as the complex of ele- | connection point of conical contraction will be de-
mentary streams where pressure and velocity are | fined from Bernoulli's equation:
averaged on time according to the Reynolds-

2 2 2
p(R):p| + p(konl) _ P(k(;V]) Cosza = +%sin2a (2)
where excess pressure function The experimental data confirm the presence
F(R) = pkD)* . > 3) and proportionality of the excess pressure tosin’a
sy function [1,2,5]. It is important to note the increasing
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of excess pressure along the boundary streams on
any head streamlining surface under contraction of
flow. This takes place because there is energy redis-
tribution in contraction connected with increasing
energy of the boundary streams and accordingly
decreasing energy of the inside streams. The corre-
sponding excess pressure occurs due to the change
of impulses of the inside streams. The value of pres-
sure change may be found from the following argu-
ments.

First, the excess pressure of real flow to ideal
flow is the result of the interaction between flow and
the inside surface of contraction. It is connected with
the changes of velocities and, accordingly, liquid
particles' impulses in the streams. Moreover, only a
part of impulse energy is consumed for increasing
potential energy of the boundary streams. This in-

creasing conforms to sin” function.

From the impulse conservation we can see
that interaction of the inside streams with the con-
traction surface will be analogous with the boundary
streams' interaction under their turning. In other

words, a ratio of excess potential f and kinetic ?
energy is kept constantly on all inside surfaces of
the conical contraction,
.2
L/AGR S X _ const (4)
do(r) cos® a
Generally speaking, the distribution of the ex-
cess energy in the boundary streams depends on
the initial impulses distribution in flow and the local
angles of interaction with the contraction surface.
The excess energy distribution can be expressed as
the sum:
dE =df (r) + do(r) = dEsin* a + dE cos’ o (5)
Second, the velocity of considering streams
will increase in accordance with reduction of cross-
sections of the contraction as well as the excess
pressure will increase proportionally to the contrac-

tion degree function s = R?/+* . It is very essential that
the summary increase of kinetic energy of the
boundary streams consists of the ideal and impulse
components. The impulse component is increased
by energy reduction of the inside streams having the
liquid particles withpkV, impulses, where k function
increases from kg to kafor axis.

At the same time, the ideal component is in-
creased by Bernoulli's equation and correlated to R*
/r*function in accordance with the continuous equa-
tion. By the same reason, the summary increase of
kinetic energy of the boundary streams also is corre-
lated to this contraction degree function [6,7].

i.e., ifa=const |,

-
TAp(R* — %) = 2 sin® af
0

or after integrating:
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Figure 1. Excess pressure of viscous flow to ideal flow

Evidently, the impulse kinetic component de is
changed as the difference in analogous way:

2
do(r) =210 (szl) cos ad (s?) (6)

Therefore, from eq. (5) the excess pressure
will depend on this function too:

2
df (r)= @sinzad(ﬂ) (7)

As integral, the excess pressure distribution
on inside surface of contraction is:

25
fr) = % [K?sin ad(s?) + f(R) (8)
1

The shape component of drag resistance
force can be defined as:

r 25
ApS, =2z | % [k*sin®ad(s®)+ f(R) [rdr  (9)
0 1

3. AXIALLY SYMMETRIC CASE

Flattening the k function can be observed un-
der a sufficiently large Reynolds number and even
profile of velocity before contraction. But these con-
ditions are characteristic rather for the external
streamlining. In this case we shall consider a cylin-
drical body with conical head situated in tube (fig.2).

Obviously, we can note the peculiar ring con-
traction at the conical head. Then the hydraulic loss-
es coefficient of the whole body &, may be presented
as the sum:

E =8 +E +E, o)

where &, &i&sare the hydraulic loss coefficients
of the ring contraction, cylindrical surface friction and
Borda's sudden expansion after stern.

Assuming® = COnSt i = 1 on the analogy of
(9) results in:

pit [ R
2

|d

22 _FZJJrf(O) rdr
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P

Ap

S8}

R2

——sin“«
2

R?
R>—r

2
1 1
where n:1—r—2 , gh_(—z——Jsinza
R n n

2 RZ_,2

(12)

Assumingo= const, k = 1, &
the analogous of (15) expression:

0 , we obtain

. V2
Forsin’ @ =1e have the widespread exper- Fy=2rH(Apy, + Ap) = 2rH (5, + 5s)pTl (7)
imental Idelchik's formula: or:
Vs 2| p2
Ap = consi(l=m== (13) F,= erMl _leinZa {l _1j }—le (18)
x 2
From Borda's formula: ne " 2
2 2 2 r
1 V; V; -1
Apv_[__lj p_l :ésp_l (14) where n=1 .
n 2 2

Then the shape component of drag resistance
force for a short cylinder with a conical head disre-

garding of friction&= 0 can be expressed as :

2
Fo=m(p+ ) = w2+ £) 20 (15)

Table 1 gives the comparison between calcu-
lated and experimental data of drag resistance coef-
ficient for different contraction degree and free flow.

At the same time, it is important to see that
there is a possibility to reduce the drag resistance by
improving shape of pier head (fig.3).

R

) 0 0 i X
‘ - /TN 7N
1’1 ! b / r l\‘-
o J \ - \
I " " "
b
— r L
M, ) |
\ " |II |II| I|II III

Figure 2. Ring contraction at the conical head

Table 1. Influence of taper angle and ratio of
cross-sectional areas on drag resistance coefficient
(calculation/experiment)

n Taper angle of head
60° 90° 120° 180°
0.1 103.5/102 | 126/125 | 148.5/146 | 171/174
0.2 21/20 26/26 31/30 36/37
0.3 7.4/7.2 9.3/9.5 11.3/11.5 | 13.2/13.0
0.4 3.2/3.3 4.1/4.2 5.1/4.9 6.0/6.0
0.5 1.5/1.6 2.0/2.0 2.512.4 3.0/2.9
0.6 0.72/0.7 1.0/0.98 1.3/1.3 1.56/1.60
0.695 0.35/0.39 | 0.51/0.52 | 0.67/0.67 | 0.82/0.83
Free flow | 39 0.52 0.66 0.82
(exper.)

4. SYMMETRIC 2D CASE

It can be shown that drag resistance of pier
head in stream channel with sufficient depth H on

the analogy of (9) is:

AN I R Y
ApH(R-r)=H[| —[k*sin“ad| —— | + f(0) |dr (16)
2 5 R-r
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Figure 3. Improving shape of pier head

Engaging by the new dimensionless coordi-

nates:
R,z 19

D (19)
we have the boundary conditions:

y=0,x=1

y=bx=a (20)
and the sin? o function as:

sinor =— (21)

2
1+[dy]
dx
Thereby, in the accepted coordinates system
for k = const, the optimal shape of pier head must
provide the minimum of the integral:

BicHuk CymcbKoro HauioHanbHOro arpapHoro yHiBepcurteTty

Cepist «MexaHi3auis Ta aBTOMaTM3aLis BUpoObHUYMX npouecisy, Bunyck 11 (27), 2015



a dx

i

In other words, the Euler's differential equa-
tion must be executed:
Y

L (23)

dx 27?
xz{um ]
dx

But this means that the differentiating expres-
sion is constant C. Involving the positive
dy/dx

(22)

=min

parameter! = ~
tions system:
dy = —tdx

we obtain the equa-

‘ (24)

x:B3
(t2+1)2

where B = i/z
C

After transformation:
7 1
f
v=B] 4¢3 - t3 _ar
“32 413 32 +1)3

Thus, we have the parameter model for the
convex curves family with reducing curvature along
flow. For the right solution one must employ the
boundary conditions (20).

CONCLUDING REMARKS:

The results shown in the present paper con-
cern mainly water flow but may be used for the cal-
culation of lifting force and Lilienthal polar of asym-
metric bodies in 2D/3D airflow. The main problem of
the proposed approach is to identify the contraction
degree function correctly, defined only for inside
problem of hydroaerodynamics.

(25)
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LllaHOu6a O.B., Mlonoe4eHko I'.C. NidpaeniyHuli onip min y eoOHoMy nomoui

B cmammi npedcmaeneHa po3paxyHKoga Modesb 2idpasnidyHo20 ornopy min y 800HOMy rnomoui. Exc-
nepumeHmarnbHe MomeepdxeHHs ompumaHe Oris 8iCeCUMMeMPUYHUX pilieHb. 3adosifibHe y3200XKeHHS
meopii 3 ekcriepumMeHmMom nidmeepaxXye 81U JIoKaibHO20 Kyma amaku i MTomo4YH020 CMyneHsi CMUCHEHHS
r1OMOKY.

Knro4doei cnoea: 2idpoduHamiyHa e3aemodiss, 60OHUU MomiK, npoghinib, Kym amaku, empamu mucky,
CMUCHEHHS1 Tomoky, aidpasniyHuli onip.

LWWaHObi6a A.B., Mlonoe4eHko I'.C. ludpaenuyeckoe conpomuesieHUe mes 8 00GHOM MOMOKe

B cmambe npedcmasneHa pacdyemHasi Mooesib 2udpasiudeckoa20 CcornpomuesieHuUss mes 8 800HOM
rmomoke. 3KcrepumeHmarnbHoe nodmeepxxoeHue osy4eHo 071 ocecuMMempUYHbIX peweHul. Yooenem-
80pumesibHOE cozriacogaHue meopuu 3 IKCrepuMeHmom rnidmeep>xdaem 6UsTHUE JI0KallbHO20 yarna ama-
KU U mekyweli cmerneHu cxamusi omoka.

Knroveeblie cnoega:a2udpoduHamuyeckoe g3aumodelicmeue, 800HbIU MOMOK, MPogusib, Y2051 amaku,
rmomepu daesrieHus1, cxamue rnomoka, 2uépassiu4ecKkoe cornpomuerieHue.
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